Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
19 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 24 additions & 7 deletions monai/data/box_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -826,7 +826,10 @@ def box_iou(boxes1: NdarrayOrTensor, boxes2: NdarrayOrTensor) -> NdarrayOrTensor
boxes2: bounding boxes, Mx4 or Mx6 torch tensor or ndarray. The box mode is assumed to be ``StandardMode``

Returns:
IoU, with size of (N,M) and same data type as ``boxes1``
An array/tensor matching the container type of ``boxes1`` (NumPy ndarray or Torch tensor), always
floating-point with size ``(N, M)``:
- if ``boxes1`` has a floating-point dtype, the same dtype is used.
- if ``boxes1`` has an integer dtype, the result is returned as ``torch.float32``.

"""

Expand All @@ -842,16 +845,18 @@ def box_iou(boxes1: NdarrayOrTensor, boxes2: NdarrayOrTensor) -> NdarrayOrTensor

inter, union = _box_inter_union(boxes1_t, boxes2_t, compute_dtype=COMPUTE_DTYPE)

# compute IoU and convert back to original box_dtype
# compute IoU and convert back to original box_dtype or torch.float32
iou_t = inter / (union + torch.finfo(COMPUTE_DTYPE).eps) # (N,M)
if not box_dtype.is_floating_point:
box_dtype = COMPUTE_DTYPE
iou_t = iou_t.to(dtype=box_dtype)

# check if NaN or Inf
if torch.isnan(iou_t).any() or torch.isinf(iou_t).any():
raise ValueError("Box IoU is NaN or Inf.")

# convert tensor back to numpy if needed
iou, *_ = convert_to_dst_type(src=iou_t, dst=boxes1)
iou, *_ = convert_to_dst_type(src=iou_t, dst=boxes1, dtype=box_dtype)
return iou


Expand All @@ -867,7 +872,10 @@ def box_giou(boxes1: NdarrayOrTensor, boxes2: NdarrayOrTensor) -> NdarrayOrTenso
boxes2: bounding boxes, Mx4 or Mx6 torch tensor or ndarray. The box mode is assumed to be ``StandardMode``

Returns:
GIoU, with size of (N,M) and same data type as ``boxes1``
An array/tensor matching the container type of ``boxes1`` (NumPy ndarray or Torch tensor), always
floating-point with size ``(N, M)``:
- if ``boxes1`` has a floating-point dtype, the same dtype is used.
- if ``boxes1`` has an integer dtype, the result is returned as ``torch.float32``.

Reference:
https://giou.stanford.edu/GIoU.pdf
Expand Down Expand Up @@ -904,12 +912,15 @@ def box_giou(boxes1: NdarrayOrTensor, boxes2: NdarrayOrTensor) -> NdarrayOrTenso

# GIoU
giou_t = iou - (enclosure - union) / (enclosure + torch.finfo(COMPUTE_DTYPE).eps)
if not box_dtype.is_floating_point:
box_dtype = COMPUTE_DTYPE
giou_t = giou_t.to(dtype=box_dtype)

if torch.isnan(giou_t).any() or torch.isinf(giou_t).any():
raise ValueError("Box GIoU is NaN or Inf.")

# convert tensor back to numpy if needed
giou, *_ = convert_to_dst_type(src=giou_t, dst=boxes1)
giou, *_ = convert_to_dst_type(src=giou_t, dst=boxes1, dtype=box_dtype)
return giou


Expand All @@ -925,7 +936,10 @@ def box_pair_giou(boxes1: NdarrayOrTensor, boxes2: NdarrayOrTensor) -> NdarrayOr
boxes2: bounding boxes, same shape with boxes1. The box mode is assumed to be ``StandardMode``

Returns:
paired GIoU, with size of (N,) and same data type as ``boxes1``
An array/tensor matching the container type of ``boxes1`` (NumPy ndarray or Torch tensor), always
floating-point with size ``(N, )``:
- if ``boxes1`` has a floating-point dtype, the same dtype is used.
- if ``boxes1`` has an integer dtype, the result is returned as ``torch.float32``.

Reference:
https://giou.stanford.edu/GIoU.pdf
Expand Down Expand Up @@ -982,12 +996,15 @@ def box_pair_giou(boxes1: NdarrayOrTensor, boxes2: NdarrayOrTensor) -> NdarrayOr
enclosure = torch.prod(wh, dim=-1, keepdim=False) # (N,)

giou_t: torch.Tensor = iou - (enclosure - union) / (enclosure + torch.finfo(COMPUTE_DTYPE).eps) # type: ignore
if not box_dtype.is_floating_point:
box_dtype = COMPUTE_DTYPE
giou_t = giou_t.to(dtype=box_dtype) # (N,spatial_dims)

if torch.isnan(giou_t).any() or torch.isinf(giou_t).any():
raise ValueError("Box GIoU is NaN or Inf.")

# convert tensor back to numpy if needed
giou, *_ = convert_to_dst_type(src=giou_t, dst=boxes1)
giou, *_ = convert_to_dst_type(src=giou_t, dst=boxes1, dtype=box_dtype)
return giou


Expand Down
51 changes: 51 additions & 0 deletions tests/data/test_box_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.data.box_utils import (
Expand Down Expand Up @@ -218,5 +219,55 @@ def test_value(self, input_data, mode2, expected_box, expected_area):
assert_allclose(nms_box, [1], type_test=False)


class TestBoxUtilsDtype(unittest.TestCase):
@parameterized.expand(
[
# numpy dtypes
(np.array([[1, 1, 1, 2, 2, 2]], dtype=np.int32), np.array([[1, 1, 1, 2, 2, 2]], dtype=np.int32)),
(np.array([[1, 1, 1, 2, 2, 2]], dtype=np.float32), np.array([[1, 1, 1, 2, 2, 2]], dtype=np.float32)),
# torch dtypes
(
torch.tensor([[1, 1, 1, 2, 2, 2]], dtype=torch.int64),
torch.tensor([[1, 1, 1, 2, 2, 2]], dtype=torch.int64),
),
(
torch.tensor([[1, 1, 1, 2, 2, 2]], dtype=torch.float32),
torch.tensor([[1, 1, 1, 2, 2, 2]], dtype=torch.float32),
),
# mixed numpy (int + float)
(np.array([[1, 1, 1, 2, 2, 2]], dtype=np.int32), np.array([[1, 1, 1, 2, 2, 2]], dtype=np.float32)),
# mixed torch (int + float)
(
torch.tensor([[1, 1, 1, 2, 2, 2]], dtype=torch.int64),
torch.tensor([[1, 1, 1, 2, 2, 2]], dtype=torch.float32),
),
]
)
def test_dtype_behavior(self, boxes1, boxes2):
funcs = [box_iou, box_giou, box_pair_giou]
for func in funcs:
result = func(boxes1, boxes2)

if isinstance(result, np.ndarray):
self.assertTrue(
np.issubdtype(result.dtype, np.floating), f"{func.__name__} expected float, got {result.dtype}"
)
elif torch.is_tensor(result):
self.assertTrue(
torch.is_floating_point(result), f"{func.__name__} expected float tensor, got {result.dtype}"
)
else:
self.fail(f"Unexpected return type {type(result)}")

def test_integer_truncation_bug(self):
# Verify fix for #8553: IoU < 1.0 with integer inputs should not truncate to 0
boxes1 = np.array([[0, 0, 0, 2, 2, 2]], dtype=np.int32)
boxes2 = np.array([[1, 1, 1, 3, 3, 3]], dtype=np.int32)

iou = box_iou(boxes1, boxes2)
self.assertTrue(np.issubdtype(iou.dtype, np.floating))
self.assertGreater(iou[0, 0], 0.0, "IoU should not be truncated to 0")


if __name__ == "__main__":
unittest.main()
Loading