The repo builds on CSRL project (in this article.) of Duke University and apply Q-Learning, Model-Checking, Value Iteration to the grid world case study.
- Python: (>=3.5)
- Rabinizer 4:
ltl2ldbamust be inPATH(ltl2ldrais optional) - NumPy: (>=1.15)
- scipy
- dill
The examples in this repository also require the following optional libraries for visualization:
- Matplotlib: (>=3.03)
- JupyterLab: (>=1.0)
- ipywidgets: (>=7.5)
- tqdm
Case_study_Prodcut_MDP.ipynb uses drill to store the product MDP model into workspace product_MDP.pkl. Case_study_2025_Nursery Scenario.ipynb use drill to load the workspace file product_MDP.pkl, then apply Q-Learning, Model-Checking, Value Iteration.