Skip to content

Experiments from the paper "Optimal control strategy based on neural model of nonlinear systems and evolutionary algorithms for renewable energy production as applied to biofuel generation", published in 2017.

License

Notifications You must be signed in to change notification settings

ValentinOsunaEnciso/2017OptimalControlStrategy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2017OptimalControlStrategy

Abstract: In the renewable energy generation, several processes require the integration of a set of advanced techniques in order to find optimal solutions. Dynamic estimation, stabilizing control for disturbance rejection, optimization for control effort, and parameter tuning are techniques used to address the whole process requirements and obtain optimal results. In this paper, an optimal control strategy for a maximum biofuel production in the presence of disturbances is proposed. First, an integrated optimal control strategy to maximize biofuel production in the presence of disturbances is proposed. Second, due to its high nonlinearity, complex nature, and multiplicity of equilibrium points, a biological process for biofuel generation is described in order to demonstrate the efficiency of the optimal control strategy. A nonlinear discrete-time neural observer for unknown nonlinear systems in the presence of external disturbances and parameter uncertainties is used to estimate unmeasurable variables. An inverse optimal control law for trajectory tracking based on the neural observer is designed such that asymptotic convergence reference trajectory is guaranteed. Differential Evolution and Clonal Selection Algorithms are used to calculate the optimal parameters for neural network training, neural network gains, and feedback control gains. Additionally, a supervisory fuzzy control is proposed in order to select the adequate control action between the closed loop and the open loop and to determine optimal reference trajectories. Simulation results comparison and statistical validation are presented, where it is demonstrated that the optimal control strategy integrated with the Differential Evolution algorithm gives better results to maximize the biofuel production in the presence of disturbances.

About

Experiments from the paper "Optimal control strategy based on neural model of nonlinear systems and evolutionary algorithms for renewable energy production as applied to biofuel generation", published in 2017.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages