v0.12.0
Improve
- Accept tensor class in layers #297
- Improve conv layer #299
- Add pooling layers #303
- Analytically compute det and eigenvalues of 4th order matrix #305
- Add ADAMENN #308
- Improve A2C #327
- Add Semi-supervised Naive Bayes #331
- Add CLUES #334
- Add Winnow #337
- Add Voted perceptron #342
- Add learning rate parameter for Voted perceptron #344
- Add Kernelized perceptron #348
- Add Pegasos #354
- Add Selective sampling perceptron and its adaptive version and Selective sampling second-order Perceptron #355
- Add Margin perceptron (PAM) #361
- Add PAUM #363
- Add Kernelized pegasos #364
- Add Shifting perceptron and RBP #367
- Add Budget perceptron #368
- Add internal parameter to the gaussian kernel of the Kernelized perceptron #370
- Implement fixed-size cache version of Budget perceptron #372
Bug fix
- Fix and improve convolutional layer #296
- Fix broadcastOperate of tensor class #302
- Fix importance calculation of DecisionTree class #313
- Improve and fix dropout layer #318
- Change default threshold of Winnow #339
Breaking changes
- Separate averaged perceptron from perceptron #351
- Fix return type of the Mean shift fit function #359
Minor changes
- Improve test #314
- Improve isZero function of Matrix class #325
- Change some fixed values to properties #335
- Improve test #350
- Format and fix some tests #374
- Update version to 0.12.0 #375
Full Changelog: v0.11.0...v0.12.0