Skip to content

akash-kumar5/Dazai---Quant-Trading

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dazai – Streamlit-Powered Crypto Strategy Backtester

Dazai is a modular Python trading system paired with a Streamlit dashboard that simulates simple crypto trading strategies. It helps visualize how a retail trader might behave across different market conditions using historical BTC/USD data.

You can backtest and visualize two core strategies — including one built on a combination of industry-standard technical indicators.


📊 Key Features

  • 📈 Backtest BTC/USD data with just a CSV
  • 🧠 Two strategies:
    • Moving Average Crossover
    • EARA Strategy (EMA, ADX, RSI, ATR combined)
  • 🧮 Performance metrics: Win Rate, Sharpe Ratio, Drawdown
  • 📉 Candlestick charts with buy/sell signal overlays
  • ⚙️ Streamlit dashboard for quick testing and visualization

🧠 Strategies Explained

  • EMA Cross
    A simple moving average crossover strategy using short and long EMAs to generate trade signals.

  • EARA (EMA-ADX-RSI-ATR Strategy)
    A custom strategy combining:

    • EMA for trend detection
    • ADX to filter trend strength
    • RSI to spot momentum exhaustion
    • ATR for volatility-aware conditions

🧱 Project Structure

. ├── backtest/ │ ├── backtester.py │ └── result_analyzer.py ├── data/ │ └── btcusd_1h.csv ├── interface/ │ ├── pages/ │ │ ├── Loader.py │ │ ├── Backtester.py │ │ └── Visualizer.py │ └── app.py ├── log/ │ └── 2025-07-06_Moving_Average_Strategy.csv ├── strategies/ │ ├── MA.py │ └── EARA.py ├── utils/ │ ├── loader.py │ ├── indicator.py │ ├── logger.py │ ├── metrics.py │ └── trade_visualizer.py ├── README.md

🖥️ Dashboard Preview

🔹 Dashboard Home

Dashboard

🔹 Data Loader Page

Loader

🔹 Strategy Backtesting Interface

Backtest

🔹 Trade Visualizer (Chart with Signals)

Visualizer

🔹 Strategy Performance Metrics

Metrics

🚀 How to Run

Install requirements and launch the app:

pip install -r requirements.txt
streamlit run app.py

Future Scope

  • Add more technical strategies (MACD, Bollinger, VWAP, etc.)
  • Live data feeds from Binance
  • Reinforcement learning agent for adaptive trading
  • Portfolio performance dashboard

About

Python scipts to load data, backtest strategy and visualize result using streamlit.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages