Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions environment.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ dependencies:
- torchvision=0.12.0
- numpy=1.20.3
- pip:
- safetensors==0.3.1
- albumentations==0.4.3
- opencv-python==4.1.2.30
- pudb==2019.2
Expand Down
45 changes: 41 additions & 4 deletions optimizedSD/optimized_txt2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,21 +15,58 @@
from ldm.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
from transformers import logging
import os
import safetensors.torch
# from samplers import CompVisDenoiser
logging.set_verbosity_error()


checkpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}

def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())

def transform_checkpoint_dict_key(k):
for text, replacement in checkpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]

return k

def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)

sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)

if new_key is not None:
sd[new_key] = v

pl_sd.clear()
pl_sd.update(sd)

return pl_sd

# The code for loading model with safetensors was taken from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/sd_models.py
def load_model_from_config(ckpt, verbose=False):

print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
_, extension = os.path.splitext(ckpt)
if extension.lower() == ".safetensors":
pl_sd = safetensors.torch.load_file(ckpt)
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
#sd = pl_sd["state_dict"]
sd = get_state_dict_from_checkpoint(pl_sd)
return sd


Expand Down