Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_outlier_removal/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_outlier_removal/__pycache__/build.cpython-36.pyc
Binary file not shown.
25 changes: 24 additions & 1 deletion q01_outlier_removal/build.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,31 @@
# %load q01_outlier_removal/build.py
# Default imports
import pandas as pd

import numpy as np
loan_data = pd.read_csv('data/loan_prediction_uncleaned.csv')
loan_data = loan_data.drop('Loan_ID', 1)


# Write your Solution here:
def outlier_removal(data):
App_inc_UQR = data.quantile(0.95,interpolation='nearest')[0]
Coo_app_inc_UQR = data.quantile(0.95,interpolation='nearest')[1]
Loan_amount_UQR = data.quantile(0.95,interpolation='nearest')[2]
Loan_amount_term_UQR = data.quantile(0.95,interpolation='nearest')[3]

data = data[data['ApplicantIncome']< App_inc_UQR]
#loan_data = loan_data[loan_data['CoapplicantIncome']<= Coo_app_inc_UQR]
data = data[data['LoanAmount'] < Loan_amount_UQR]
#loan_data = loan_data[loan_data['Loan_Amount_Term']<= Loan_amount_term_UQR]

return data










Binary file modified q01_outlier_removal/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
38 changes: 38 additions & 0 deletions q02_data_cleaning_all/build.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
# %load q02_data_cleaning_all/build.py
# Default Imports
import sys, os
import random
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname('__file__'))))
import pandas as pd
import numpy as np
Expand All @@ -10,5 +12,41 @@
loan_data = loan_data.drop('Loan_ID', 1)
loan_data = outlier_removal(loan_data)

random.seed(9)

# Write your solution here :
def data_cleaning(loan_data):
columns = np.array(loan_data.columns)

null_values_columns=[]
for i in range(len(columns)):
print('-----------------')
print(columns[i])
print(loan_data.loc[:,columns[i]].isnull().values.any())
if (loan_data.loc[:,columns[i]].isnull().values.any() == True):
null_values_columns.append(columns[i])


for i in range(len(null_values_columns)):
dtype = loan_data.loc[:,null_values_columns[i]].get_dtype_counts().index[0]
if dtype == 'float64':
mean = loan_data.loc[:,null_values_columns[i]].mean()
loan_data.loc[:,null_values_columns[i]].fillna(mean,inplace=True)
elif dtype=='object':
mode = loan_data.loc[:,null_values_columns[i]].mode()[0]
loan_data.loc[:,null_values_columns[i]].fillna(mode,inplace=True)

X_train,X_test,y_train,y_test = train_test_split(loan_data.iloc[:,:-1],loan_data.iloc[:,-1],test_size=0.25)
X , y = loan_data.iloc[:,:-1],loan_data.iloc[:,-1]

return X,y,X_train,X_test,y_train,y_test










Binary file not shown.
Binary file not shown.