Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_outlier_removal/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_outlier_removal/__pycache__/build.cpython-36.pyc
Binary file not shown.
11 changes: 11 additions & 0 deletions q01_outlier_removal/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q01_outlier_removal/build.py
# Default imports
import pandas as pd

Expand All @@ -6,3 +7,13 @@


# Write your Solution here:
def outlier_removal(data):
q1=loan_data['ApplicantIncome'].quantile(0.95)
q2=loan_data['CoapplicantIncome'].quantile(0.95)
q3=loan_data['LoanAmount'].quantile(0.95)
df =loan_data.drop(loan_data[(loan_data['ApplicantIncome']>q1)].index)
df1=df.drop(df[(df['CoapplicantIncome']>q2)].index)
df2=df1.drop(df1[(df1['LoanAmount']>q3)].index)
return df2


Binary file modified q01_outlier_removal/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
21 changes: 21 additions & 0 deletions q02_data_cleaning_all/build.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
# %load q02_data_cleaning_all/build.py
# Default Imports
import sys, os
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname('__file__'))))
import pandas as pd
import numpy as np
import statistics
from sklearn.model_selection import train_test_split
from greyatomlib.logistic_regression_project.q01_outlier_removal.build import outlier_removal

Expand All @@ -12,3 +14,22 @@


# Write your solution here :
def data_cleaning(data):

categoricals = loan_data.select_dtypes(exclude=[np.number])
numericals = loan_data.select_dtypes(include=[np.number])
numericals['LoanAmount'].fillna(numericals['LoanAmount'].mean(),inplace=True)
numericals['Loan_Amount_Term'].fillna(statistics.mode(numericals['Loan_Amount_Term'].values), inplace = True)
numericals['Credit_History'].fillna(statistics.mode(numericals['Credit_History'].values), inplace = True)
categoricals['Gender'].fillna(statistics.mode(categoricals['Gender'].values), inplace = True)
categoricals['Married'].fillna(statistics.mode(categoricals['Married'].values), inplace = True)
categoricals['Dependents'].fillna(statistics.mode(categoricals['Dependents'].values), inplace = True)
categoricals['Self_Employed'].fillna(statistics.mode(categoricals['Self_Employed'].values), inplace = True)
X=loan_data.iloc[:,:-1]
y=loan_data.iloc[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=9, test_size=0.25)
return X,y,X_train,X_test,y_train,y_test




Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
53 changes: 53 additions & 0 deletions q02_data_cleaning_all_2/build.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
# %load q02_data_cleaning_all_2/build.py
# Default Imports
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder

from greyatomlib.logistic_regression_project.q02_data_cleaning_all.build import data_cleaning
from greyatomlib.logistic_regression_project.q01_outlier_removal.build import outlier_removal

Expand All @@ -11,3 +14,53 @@


# Write your solution here :
def data_cleaning_2(X_train,X_test,y_train,y_test):
X_train['ApplicantIncome']=np.sqrt(X_train['ApplicantIncome'])
X_test['ApplicantIncome']=np.sqrt(X_test['ApplicantIncome'])
X_train['CoapplicantIncome']=np.sqrt(X_train['CoapplicantIncome'])
X_test['CoapplicantIncome']=np.sqrt(X_test['CoapplicantIncome'])
X_train['LoanAmount']=np.sqrt(X_train['LoanAmount'])
X_test['LoanAmount']=np.sqrt(X_test['LoanAmount'])

lablel_encoder = LabelEncoder()
X_train['Gender'] = lablel_encoder.fit_transform(X_train['Gender'])
X_train['Married'] = lablel_encoder.fit_transform(X_train['Married'])
X_train['Education'] = lablel_encoder.fit_transform(X_train['Education'])
X_train['Self_Employed'] = lablel_encoder.fit_transform(X_train['Self_Employed'])

X_test['Gender'] = lablel_encoder.fit_transform(X_test['Gender'])
X_test['Married'] = lablel_encoder.fit_transform(X_test['Married'])
X_test['Education'] = lablel_encoder.fit_transform(X_test['Education'])
X_test['Self_Employed'] = lablel_encoder.fit_transform(X_test['Self_Employed'])


numericals_train = X_train.select_dtypes(include=[np.number])
categoricals_train = X_train.select_dtypes(exclude=[np.number])
dummies_train=pd.get_dummies(categoricals_train)
dummies_train_1=dummies_train.loc[:,'Dependents_0':'Dependents_3+']
dummies_train_2=dummies_train.loc[:,'Property_Area_Rural':'Property_Area_Urban']
dummies_train_final=pd.concat([dummies_train_1,dummies_train_2],axis=1)
final_X_train=pd.concat([X_train, dummies_train_final], axis = 1)

final_X_train=final_X_train.drop('Dependents',axis=1)
final_X_train=final_X_train.drop('Property_Area',axis=1)
final_X_train=final_X_train.drop('Credit_History',axis=1)
final_X_train=final_X_train.drop('Loan_Amount_Term',axis=1)

numericals_test = X_test.select_dtypes(include=[np.number])
categoricals_test = X_test.select_dtypes(exclude=[np.number])
dummies_test=pd.get_dummies(categoricals_test)
dummies_test_1=dummies_test.loc[:,'Dependents_0':'Dependents_3+']
dummies_test_2=dummies_test.loc[:,'Property_Area_Rural':'Property_Area_Urban']
dummies_test_final=pd.concat([dummies_test_1,dummies_test_2],axis=1)
final_X_test=pd.concat([X_test, dummies_test_final], axis = 1)

final_X_test=final_X_test.drop('Dependents',axis=1)
final_X_test=final_X_test.drop('Property_Area',axis=1)
final_X_test=final_X_test.drop('Credit_History',axis=1)
final_X_test=final_X_test.drop('Loan_Amount_Term',axis=1)


return final_X_train,final_X_test,y_train,y_test


Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
13 changes: 13 additions & 0 deletions q03_logistic_regression/build.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
# %load q03_logistic_regression/build.py
# Default Imports
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.metrics import confusion_matrix
from greyatomlib.logistic_regression_project.q01_outlier_removal.build import outlier_removal
from greyatomlib.logistic_regression_project.q02_data_cleaning_all.build import data_cleaning
Expand All @@ -15,4 +17,15 @@


# Write your solution code here:
def logistic_regression(X_train,X_test,y_train,y_test):
logistic_regressor = LogisticRegression(random_state=9)
scaler = StandardScaler()
pipeline = Pipeline(steps=[('scaler', scaler),
('logistic_regression', logistic_regressor)])
pipeline.fit(X_test, y_test)
y_pred = pipeline.predict(X_test)
cm=confusion_matrix(y_test,y_pred)
return cm



Binary file not shown.
Binary file not shown.