sm-ml-project-scaffold is a Data Science and deep learning project structure. An environment to develop your entire machine (deep) learning project, from exploratory data analysis to production-ready code running in a Docker container.
The folders are organized as follows:
sm-ml-project-scaffold
├── README.md
├── algorithm
│   ├── README.md
│   ├── __init__.py
│   ├── custom_losses.py
│   ├── custom_metrics.py
│   ├── data_models
│   │   ├── README.md
│   │   ├── __init__.py
│   │   └── get_data.py
│   ├── lib
│   │   ├── README.md
│   │   └── __init__.py
│   ├── model.py
│   ├── optimizers.py
│   ├── schemas
│   │   ├── README.md
│   │   ├── default_hyperparameters.json
│   │   ├── input_schema.json
│   │   └── output_schema.json
│   ├── sm_algo.py
│   ├── sm_serve.py
│   ├── sm_train.py
│   └── util
│       ├── README.md
│       └── __init__.py
├── bin
│   └── docker-entrypoint.sh
├── buildspec.yml
├── data
│   ├── eval
│   ├── test
│   └── train
├── doc
├── docker_build
│   ├── Dockerfile
│   └── build_and_push.sh
├── examples
├── notebooks
│   ├── README.md
│   ├── eda.ipynb
│   └── outline.ipynb
├── opt
│   └── ml
│       ├── input
│       │   ├── config
│       │   └── data
│       │       ├── eval
│       │       ├── examples
│       │       └── train
│       ├── model
│       └── output
├── package.info
├── requirements.txt
├── scripts
│   └── __init__.py
├── templates
│   ├── docker_buildspec_template.yml
│   └── mxnet_hyperparameters_template.json
└── test
27 directories, 33 files
- Clone this repo.
 - Use README files in each folder to guide your project.
 - Get rid of what you don't need.
 - Send me suggestions or pull requests.