A machine learning web application that predicts wine quality based on physicochemical properties using ElasticNet regression.
- Real-time wine quality prediction (0-10 scale)
- User-friendly web interface
- Machine Learning model using ElasticNet regression
- Automated CI/CD pipeline with GitHub Actions
- Docker containerized deployment on AWS EC2
- Backend: Python, Flask
- ML Framework: scikit-learn, pandas, numpy
- Deployment: Docker, AWS ECR, AWS EC2
- CI/CD: GitHub Actions
- Version Control: Git, GitHub
1.update config.yaml 2.update schema.yaml 3.update params.yaml 4.update the entity 5.update the configuration manager in src config 6.update the configurations 7.update the pipeline 8.update the main.py 9.update the app.py