MWEV2018.09
·
99 commits
to master
since this release
This is release 2018.09 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2018.09 and the MetaWare EV Development Toolkit v2018.09 from Synopsys.
Supported Models
- alexnet
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- squeezenet
- ssd
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
Changes vs v2018.06
New models
- icnet
- inception_resnet_v1
- mobilenet_ssd
- pvanet
Improved models
- alexnet
- squezenet - instead of SqueezeNet_v1.0 SqueezeNet_v1.1
- denoizer
- facedetect_v1
- googlenet_cnn
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- mobilenet
- resnet_101
- resnet_152
- resnet_50
- ssd
- vgg16
- yolo_v2_voc
Removed models
- scene_segmentation
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Helper tools
git_sparse_download.sh(bat) - helps to download just part of models.