MWEV2018.12.RC1
·
91 commits
to master
since this release
This is release 2018.12.RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2018.12.RC1 and the MetaWare EV Development Toolkit v2018.12.RC1 from Synopsys.
Supported Models
- alexnet
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- squeezenet
- ssd
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2018.09
New models
- openpose
- segnet
- pspnet
- unet
- yolo_v3 (yolo_v3_tiny included)
Improved parts
Added improved compressed, pruned and random-pruned models
Helper tools
git_sparse_download.sh(bat) - helps to download just part of models.