Skip to content
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ models/*
models-mnt
!models/.editorconfig
!models/ggml-vocab-*.gguf*
!models/templates

# Zig
zig-out/
Expand Down
76 changes: 71 additions & 5 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -1900,6 +1900,7 @@ def prepare_tensors(self):
"MixtralForCausalLM",
"VLlama3ForCausalLM",
"LlavaForConditionalGeneration",
"VoxtralForConditionalGeneration",
"LlamaModel")
class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
Expand All @@ -1912,6 +1913,11 @@ def __init__(self, *args, **kwargs):
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)

def set_vocab(self):
path_tekken_json = self.dir_model / "tekken.json"
path_tokenizer_json = self.dir_model / "tokenizer.json"
if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
return self.set_vocab_tekken()

try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
Expand Down Expand Up @@ -1944,6 +1950,52 @@ def set_vocab(self):
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)

def set_vocab_tekken(self):
vocab = gguf.vocab.MistralVocab(self.dir_model)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)

tokens = []
scores = []
toktypes = []

for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)

assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)

if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)

logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)

self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)

self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)

self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)

script_dir = Path(__file__).parent
template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
with open(template_path, "r", encoding="utf-8") as f:
template = f.read()
self.gguf_writer.add_chat_template(template)

def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
Expand Down Expand Up @@ -1971,12 +2023,13 @@ def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
is_vision_tensor = "vision_tower" in name \
is_multimodal_tensor = "vision_tower" in name \
or "vision_model" in name \
or "audio_tower" in name \
or "model.connector" in name \
or "multi_modal_projector" in name

if is_vision_tensor:
if is_multimodal_tensor:
return [] # skip vision tensors
elif self.hf_arch == "LlamaModel":
name = "model." + name
Expand Down Expand Up @@ -7231,9 +7284,10 @@ class WhisperEncoderModel(MmprojModel):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["hidden_size"] = self.hparams["d_model"]
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
self.hparams["hidden_size"] = self.hparams["d_model"]
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]

def set_gguf_parameters(self):
super().set_gguf_parameters()
Expand Down Expand Up @@ -7272,9 +7326,21 @@ class UltravoxWhisperEncoderModel(WhisperEncoderModel):

def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])


@ModelBase.register("VoxtralForConditionalGeneration")
class VoxtralWhisperEncoderModel(WhisperEncoderModel):
has_vision_encoder = False # no vision encoder
has_audio_encoder = True

def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size


@ModelBase.register("FalconH1ForCausalLM")
class FalconH1Model(Mamba2Model):
model_arch = gguf.MODEL_ARCH.FALCON_H1
Expand Down
3 changes: 3 additions & 0 deletions docs/multimodal.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,9 @@ NOTE: some models may require large context window, for example: `-c 8192`
# Qwen2-Audio and SeaLLM-Audio
# note: no pre-quantized GGUF this model, as they have very poor result
# ref: https://github.com/ggml-org/llama.cpp/pull/13760

# Mistral's Voxtral
(tool_name) -hf ggml-org/Voxtral-Mini-3B-2507-GGUF
```

**Mixed modalities**:
Expand Down
1 change: 1 addition & 0 deletions gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -2704,6 +2704,7 @@ class VisionProjectorType:
INTERNVL = "internvl"
QWEN2A = "qwen2a" # audio
QWEN25O = "qwen2.5o" # omni
VOXTRAL = "voxtral"


# Items here are (block size, type size)
Expand Down
Loading
Loading