Skip to content

added smollama base model - 1B parameter #39543

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions src/transformers/models/smollama/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .configuration_smollama import SmollamaConfig
from .modeling_smollama import (
SmollamaForCausalLM,
SmollamaForQuestionAnswering,
SmollamaForSequenceClassification,
SmollamaForTokenClassification,
SmollamaModel,
SmollamaPreTrainedModel,
)

__all__ = [
"SmollamaConfig",
"SmollamaPreTrainedModel",
"SmollamaModel",
"SmollamaForCausalLM",
"SmollamaForSequenceClassification",
"SmollamaForTokenClassification",
"SmollamaForQuestionAnswering",
]
251 changes: 251 additions & 0 deletions src/transformers/models/smollama/configuration_smollama.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...configuration_utils import PretrainedConfig, layer_type_validation
from ...modeling_rope_utils import rope_config_validation


class SmollamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SmollamaModel`]. It is used to instantiate a
Smollama model according to the specified arguments, defining the model architecture. Smollama combines the
Llama 3.2 1B architecture with SmolLM3's NoPE pattern for better 128K context handling.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the Smollama model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`SmollamaModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 5632):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 22):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `4`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with. Set to 128K for long context.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 128004):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 128000):
The id of the beginning of sentence token.
eos_token_id (`int`, *optional*, defaults to 128001):
The id of the end of sentence token.
rope_theta (`float`, *optional*, defaults to 2000000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Configured for 128K context.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*):
Sliding window attention (SWA) window size. If not specified, will default to `None`.
no_rope_layers (`List[int]`, *optional*):
List with at least the same length as the number of layers in the model.
A `1` at an index position indicates that the corresponding layer will use RoPE,
while a `0` indicates that it's a NoPE layer.
no_rope_layer_interval (`int`, *optional*, defaults to 4):
If `no_rope_layers` is `None`, it will be created using a NoPE layer every
`no_rope_layer_interval` layers.
layer_types (`list`, *optional*):
Attention pattern for each layer. Automatically computed based on sliding window and NoPE settings.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.

```python
>>> from transformers import SmollamaModel, SmollamaConfig

>>> # Initializing a Smollama style configuration
>>> configuration = SmollamaConfig()

>>> # Initializing a model from the Smollama style configuration
>>> model = SmollamaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "smollama"
keys_to_ignore_at_inference = ["past_key_values"]

base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}

def __init__(
self,
vocab_size=128256,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=22,
num_attention_heads=16,
num_key_value_heads=4,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=128004,
bos_token_id=128000,
eos_token_id=128001,
rope_theta=2000000.0,
rope_scaling=None,
use_sliding_window=False,
sliding_window=None,
no_rope_layers=None,
no_rope_layer_interval=4,
layer_types=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.mlp_bias = mlp_bias
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window

# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = 4

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout

# Set up NoPE pattern - every 4th layer is NoPE (no RoPE)
if no_rope_layers is None:
self.no_rope_layers = [
int((layer_idx + 1) % no_rope_layer_interval != 0) for layer_idx in range(num_hidden_layers)
]
else:
self.no_rope_layers = no_rope_layers

self.no_rope_layer_interval = no_rope_layer_interval

# Update layer_types based on sliding window and NoPE pattern
if layer_types is None:
layer_types = []
for layer_idx in range(num_hidden_layers):
has_rope = self.no_rope_layers[layer_idx]
if use_sliding_window and sliding_window is not None and not has_rope:
layer_types.append("sliding_attention")
else:
layer_types.append("full_attention")

self.layer_types = layer_types
layer_type_validation(self.layer_types)

# Set up rope scaling for 128K context if not provided
if self.rope_scaling is None:
self.rope_scaling = {
"rope_type": "llama3",
"factor": 64.0, # 131072 / 2048 = 64
"original_max_position_embeddings": 2048,
"low_freq_factor": 1.0,
"high_freq_factor": 1.1, # Must be > low_freq_factor
}

# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)


__all__ = ["SmollamaConfig"]
Loading