In this step-by-step tutorial, learn how to build, visualize, and deploy a Scikit-learn machine learning model using Streamlit for the UI, Docker for containerization, and Kubernetes (Minikube) for scalable deployment!
YouTube Link: https://youtu.be/Ska5_d63mLM?si=Xug9kxJoxheblrsu
- Python
- Streamlit
- Docker
- DockerHub Account
- Kubernetes Cluster (Minikube)
sudo apt update && sudo apt upgrade -ysudo apt install python3-pip -ypython -m venv venv
source venv/bin/activatepip3 install streamlit scikit-learn pandas matplotlib seaborn reportlabstreamlit run app.pyhttp://localhost:8501or
http://PublicIP:8501docker build -t streamlit-ml-app:latest .docker run -p 8501:8501 streamlit-ml-app:latesthttp://localhost:8501Go to your DockerHub account and create a Personal Access Token (PAT) - This will be your password -
docker login -u iquantcdocker tag streamlit-ml-app:latest iquantc/streamlit-ml-app:latestdocker push iquantc/streamlit-ml-app:latestReview manifest files
minikube start --driver=dockerkubectl apply -f deployment.yamlkubectl apply -f service.yamlkubectl get podskubectl get svcminikube iphttp://<minikube-ip>:30001minikube stopminikube delete --all