|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "c1fdd473", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Loading Fiber Photometry Data\n", |
| 9 | + "\n", |
| 10 | + "Calcium activity recorded using a fiber photometry." |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": null, |
| 16 | + "id": "6e1ba7b2", |
| 17 | + "metadata": { |
| 18 | + "nbsphinx": "hidden" |
| 19 | + }, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "# Turn off logging and disable tqdm this is a hidden cell on docs page\n", |
| 23 | + "import logging\n", |
| 24 | + "import os\n", |
| 25 | + "\n", |
| 26 | + "logger = logging.getLogger('ibllib')\n", |
| 27 | + "logger.setLevel(logging.CRITICAL)\n", |
| 28 | + "\n", |
| 29 | + "os.environ[\"TQDM_DISABLE\"] = \"1\"" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "id": "a406ed50", |
| 35 | + "metadata": {}, |
| 36 | + "source": [ |
| 37 | + "## Relevant ALF objects\n", |
| 38 | + "* photometry\n", |
| 39 | + "* photometryROI\n", |
| 40 | + "\n", |
| 41 | + "\n", |
| 42 | + "## More details\n", |
| 43 | + "* [Description of photometry datasets](https://docs.google.com/document/d/1OqIqqakPakHXRAwceYLwFY9gOrm8_P62XIfCTnHwstg/edit#heading=h.3o4nwo63tny)" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "markdown", |
| 48 | + "id": "02482b24", |
| 49 | + "metadata": {}, |
| 50 | + "source": [ |
| 51 | + "## Finding sessions with photometry data\n", |
| 52 | + "Sessions that contain photometry data can be found by searching for sessions with a corresponding photometry dataset" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "code", |
| 57 | + "execution_count": null, |
| 58 | + "id": "06f43a20", |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "from one.api import ONE\n", |
| 63 | + "one = ONE()\n", |
| 64 | + "sessions = one.search(dataset='photometry.signal.pqt')\n", |
| 65 | + "print(f'{len(sessions)} sessions with photometry data found')" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "markdown", |
| 70 | + "id": "dea30e9f", |
| 71 | + "metadata": {}, |
| 72 | + "source": [ |
| 73 | + "## Loading photometry data\n", |
| 74 | + "The photometry data for a single session can be loaded in the following way" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": null, |
| 80 | + "id": "41fae7ad", |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "# Get the first returned sessions with photometry data\n", |
| 85 | + "eid = sessions[0]\n", |
| 86 | + "# Load the photometry signal dataset\n", |
| 87 | + "photometry = one.load_dataset(eid, 'photometry.signal.pqt')\n", |
| 88 | + "print(photometry.columns)" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "markdown", |
| 93 | + "id": "5a19d768", |
| 94 | + "metadata": {}, |
| 95 | + "source": [ |
| 96 | + "The data returned is a table that contains photometry data for all ROIS (Region0G, Region1G, ...) recorded simultaneously in a single session. The number of rows in the table give the number of imaging frames in the dataset. The timestamps for each frame is stored in the `times` column are in seconds from session start and are aligned to other times from the session, e.g behavioral or video events.\n", |
| 97 | + "\n", |
| 98 | + "The wavelength of light used to collect each imaging frame can be found using either the `wavelength` or the `name` column. For example if we want to limit our table to only frames collected at 470 nm we can do the following" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "id": "62f0bc6c", |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "# Limit signal to frames collected at 470 nm\n", |
| 109 | + "photometry = photometry[photometry['wavelength'] == 470]" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "id": "d544f651", |
| 115 | + "metadata": {}, |
| 116 | + "source": [ |
| 117 | + "The photometry data also contains a column called `include` which contains a manually selected interval of the signal that is free from artefacts" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "id": "acc946cf", |
| 124 | + "metadata": {}, |
| 125 | + "outputs": [], |
| 126 | + "source": [ |
| 127 | + "# Restrict signal to artefact free intervals\n", |
| 128 | + "photometry = photometry[photometry['include']]" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "markdown", |
| 133 | + "id": "a9f91adb", |
| 134 | + "metadata": {}, |
| 135 | + "source": [ |
| 136 | + "## Associating ROIs to Brain Regions" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "id": "462c2242", |
| 142 | + "metadata": {}, |
| 143 | + "source": [ |
| 144 | + "We can associate each Region with a brain region by loading in the photometryROI dataset. This contains a lookup table from `ROI` to a `fiber` stored on the openalyx database and a `brain_region`" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "id": "5ff081d7", |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "rois = one.load_dataset(eid, 'photometryROI.locations.pqt')\n", |
| 155 | + "rois" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "markdown", |
| 160 | + "id": "bbdfb2fc", |
| 161 | + "metadata": {}, |
| 162 | + "source": [ |
| 163 | + "We can rename our columns in our photometry data with the brain regions" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": null, |
| 169 | + "id": "4420a657", |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "photometry = photometry.rename(columns=rois.to_dict()['brain_region'])\n", |
| 174 | + "print(photometry.columns)" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "id": "9c3978e5", |
| 180 | + "metadata": {}, |
| 181 | + "source": [ |
| 182 | + "Please see the associated [publication](https://doi.org/10.1101/2024.02.26.582199) for these datasets for more information about the definition of the given brain regions." |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "markdown", |
| 187 | + "id": "d2116ab7", |
| 188 | + "metadata": {}, |
| 189 | + "source": [ |
| 190 | + "## QC of the ROIs" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "markdown", |
| 195 | + "id": "a4cc1d09", |
| 196 | + "metadata": {}, |
| 197 | + "source": [ |
| 198 | + "Each ROI has an associated fiber insertion registered on the openalyx database. The fiber contains information about the brain region targeted and also a `QC` value indicating if the signal is good or not. The associated [publication](https://doi.org/10.1101/2024.02.26.582199) contains more information about the defintion of a passing QC value.\n", |
| 199 | + "\n", |
| 200 | + "For a session we can find the QC for each ROI in the following way" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": null, |
| 206 | + "id": "4937fd8c", |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [ |
| 210 | + "from iblutil.util import Bunch\n", |
| 211 | + "\n", |
| 212 | + "QC = Bunch()\n", |
| 213 | + "for roi, info in rois.iterrows():\n", |
| 214 | + " fiber = one.alyx.rest('insertions', 'list', session=eid, name=info.fiber)[0]\n", |
| 215 | + " QC[info.brain_region] = fiber['json']['qc']\n", |
| 216 | + "\n", |
| 217 | + "print(QC)" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "markdown", |
| 222 | + "id": "eb061d87", |
| 223 | + "metadata": {}, |
| 224 | + "source": [ |
| 225 | + "## Computing dF / F" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "markdown", |
| 230 | + "id": "b36aef53", |
| 231 | + "metadata": {}, |
| 232 | + "source": [ |
| 233 | + "Here we show an example of how to compute the dF/F signal from the photometry data using the defintion in associated [publication](https://doi.org/10.1101/2024.02.26.582199)" |
| 234 | + ] |
| 235 | + }, |
| 236 | + { |
| 237 | + "cell_type": "code", |
| 238 | + "execution_count": null, |
| 239 | + "id": "5fa5ca08", |
| 240 | + "metadata": {}, |
| 241 | + "outputs": [], |
| 242 | + "source": [ |
| 243 | + "# Compute df/F signal for brain region DMS\n", |
| 244 | + "# Baseline signal is the +- 30s rolling average of the raw signal\n", |
| 245 | + "\n", |
| 246 | + "# Get the frame rate of the data\n", |
| 247 | + "fr = (1 / photometry.times.diff().mean()).round()\n", |
| 248 | + "# Define rolling average window of 30 s\n", |
| 249 | + "window = 30\n", |
| 250 | + "\n", |
| 251 | + "F = photometry['DMS']\n", |
| 252 | + "F0 = F.rolling(int(fr * window), center=True).mean()\n", |
| 253 | + "dF = (F - F0) / F0\n" |
| 254 | + ] |
| 255 | + } |
| 256 | + ], |
| 257 | + "metadata": { |
| 258 | + "celltoolbar": "Edit Metadata", |
| 259 | + "kernelspec": { |
| 260 | + "display_name": "Python 3 (ipykernel)", |
| 261 | + "language": "python", |
| 262 | + "name": "python3" |
| 263 | + }, |
| 264 | + "language_info": { |
| 265 | + "codemirror_mode": { |
| 266 | + "name": "ipython", |
| 267 | + "version": 3 |
| 268 | + }, |
| 269 | + "file_extension": ".py", |
| 270 | + "mimetype": "text/x-python", |
| 271 | + "name": "python", |
| 272 | + "nbconvert_exporter": "python", |
| 273 | + "pygments_lexer": "ipython3", |
| 274 | + "version": "3.9.16" |
| 275 | + } |
| 276 | + }, |
| 277 | + "nbformat": 4, |
| 278 | + "nbformat_minor": 5 |
| 279 | +} |
0 commit comments