Tensorflow Implementation of Deep Learning Approach for Event Extraction(ACE 2005) via Dynamic Multi-Pooling Convolutional Neural Networks.
- Tensorflow
- Scikit-learn
- NLTK
pip install -r requirements.txt may help.
- 
"GoogleNews-vectors-negative300" is used as a pre-trained word2vec model. 
- 
"glove.6B" is used as a pre-trained GloVe model. 
- 
Performance (accuracy and f1-socre) outputs during training are UNOFFICIAL SCORES of ACE 2005. 
$ python Script.py {taskID} {subtaskID}- 
taskID: 1 for Trigger, 2 for Argument
- 
subtaskID: 1 for Identification, 2 for Classification
- 
After model training, evaluation results will be shown. 
$ python Script.py 1 2  # Script for `Trigger Classification`- Apply Dymamic Multi-Pooling CNN
- Evaluation Script
              precision    recall  f1-score   support
     TRIGGER       0.59      0.44      0.50       527
        None       0.97      0.98      0.98      9151
   micro avg       0.95      0.95      0.95      9678
   macro avg       0.78      0.71      0.74      9678
weighted avg       0.95      0.95      0.95      9678
             precision    recall  f1-score   support
        Life       0.75      0.70      0.72       114
     Justice       0.78      0.85      0.81       114
    Movement       0.69      0.70      0.69        53
   Personnel       0.68      0.64      0.66        78
    Business       0.75      0.46      0.57        13
    Conflict       0.78      0.83      0.80       247
     Contact       0.79      0.86      0.83        36
 Transaction       1.00      0.48      0.65        27
   micro avg       0.76      0.76      0.76       682
   macro avg       0.78      0.69      0.72       682
weighted avg       0.76      0.76      0.76       682
              precision    recall  f1-score   support
    Movement       0.47      0.21      0.29        68
    Business       1.00      0.10      0.18        10
     Contact       0.67      0.22      0.33        37
     Justice       0.32      0.17      0.23        63
        None       0.96      0.99      0.98      8348
    Conflict       0.70      0.38      0.50       156
        Life       0.64      0.38      0.48        65
 Transaction       0.75      0.10      0.18        29
   Personnel       0.73      0.24      0.36        46
   micro avg       0.95      0.95      0.95      8822
   macro avg       0.69      0.31      0.39      8822
weighted avg       0.94      0.95      0.94      8822
              precision    recall  f1-score   support
      Seller       0.00      0.00      0.00         4
       Money       0.00      0.00      0.00        13
      Target       0.30      0.16      0.21        67
 Destination       0.45      0.20      0.28        49
      Victim       0.35      0.23      0.28        48
  Instrument       0.25      0.10      0.14        31
       Crime       0.67      0.14      0.23        43
 Adjudicator       0.00      0.00      0.00        20
      Origin       0.00      0.00      0.00        34
        Time       0.46      0.22      0.30       193
       Agent       0.00      0.00      0.00        40
    Position       0.00      0.00      0.00        20
       Giver       0.00      0.00      0.00        16
 Beneficiary       0.00      0.00      0.00         5
         Org       0.00      0.00      0.00         6
    Artifact       0.00      0.00      0.00        14
       Place       0.28      0.21      0.24       149
        None       0.75      0.95      0.84      2593
  Prosecutor       0.00      0.00      0.00         2
      Person       0.25      0.18      0.21       113
    Attacker       0.32      0.11      0.16        75
   Defendant       0.47      0.14      0.21        51
    Sentence       0.67      0.40      0.50        10
   Plaintiff       0.00      0.00      0.00        17
     Vehicle       0.00      0.00      0.00        10
      Entity       0.17      0.02      0.03       110
   Recipient       0.00      0.00      0.00         4
       Price       0.00      0.00      0.00         1
       Buyer       0.00      0.00      0.00         4
   micro avg       0.70      0.70      0.70      3742
   macro avg       0.19      0.11      0.13      3742
weighted avg       0.61      0.70      0.64      3742