Lexoid is an efficient document parsing library that supports both LLM-based and non-LLM-based (static) PDF document parsing.
- Use the multi-modal advancement of LLMs
- Enable convenience for users
- Collaborate with a permissive license
pip install lexoid
To use LLM-based parsing, define the following environment variables or create a .env
file with the following definitions
OPENAI_API_KEY=""
GOOGLE_API_KEY=""
Optionally, to use Playwright
for retrieving web content (instead of the requests
library):
playwright install --with-deps --only-shell chromium
make build
To install dependencies:
make install
or, to install with dev-dependencies:
make dev
To activate virtual environment:
source .venv/bin/activate
Here's a quick example to parse documents using Lexoid:
from lexoid.api import parse
from lexoid.api import ParserType
parsed_md = parse("https://www.justice.gov/eoir/immigration-law-advisor", parser_type="LLM_PARSE")["raw"]
# or
pdf_path = "path/to/immigration-law-advisor.pdf"
parsed_md = parse(pdf_path, parser_type="LLM_PARSE")["raw"]
print(parsed_md)
- path (str): The file path or URL.
- parser_type (str, optional): The type of parser to use ("LLM_PARSE" or "STATIC_PARSE"). Defaults to "AUTO".
- pages_per_split (int, optional): Number of pages per split for chunking. Defaults to 4.
- max_threads (int, optional): Maximum number of threads for parallel processing. Defaults to 4.
- **kwargs: Additional arguments for the parser.
- OpenAI
- Hugging Face
- Together AI
- OpenRouter
- Fireworks
Results aggregated across 14 documents.
Note: Benchmarks are currently done in the zero-shot setting.
Rank | Model | SequenceMatcher Similarity | TFIDF Similarity | Time (s) | Cost ($) |
---|---|---|---|---|---|
1 | AUTO (with auto-selected model) | 0.899 (±0.131) | 0.960 (±0.066) | 21.17 | 0.00066 |
2 | AUTO | 0.895 (±0.112) | 0.973 (±0.046) | 9.29 | 0.00063 |
3 | gemini-2.5-flash | 0.886 (±0.164) | 0.986 (±0.027) | 52.55 | 0.01226 |
4 | mistral-ocr-latest | 0.882 (±0.106) | 0.932 (±0.091) | 5.75 | 0.00121 |
5 | gemini-2.5-pro | 0.876 (±0.195) | 0.976 (±0.049) | 22.65 | 0.02408 |
6 | gemini-2.0-flash | 0.875 (±0.148) | 0.977 (±0.037) | 11.96 | 0.00079 |
7 | claude-3-5-sonnet-20241022 | 0.858 (±0.184) | 0.930 (±0.098) | 17.32 | 0.01804 |
8 | gemini-1.5-flash | 0.842 (±0.214) | 0.969 (±0.037) | 15.58 | 0.00043 |
9 | gpt-5-mini | 0.819 (±0.201) | 0.917 (±0.104) | 52.84 | 0.00811 |
10 | gpt-5 | 0.807 (±0.215) | 0.919 (±0.088) | 98.12 | 0.05505 |
11 | claude-sonnet-4-20250514 | 0.801 (±0.188) | 0.905 (±0.136) | 22.02 | 0.02056 |
12 | claude-opus-4-20250514 | 0.789 (±0.220) | 0.886 (±0.148) | 29.55 | 0.09513 |
13 | accounts/fireworks/models/llama4-maverick-instruct-basic | 0.772 (±0.203) | 0.930 (±0.117) | 16.02 | 0.00147 |
14 | gemini-1.5-pro | 0.767 (±0.309) | 0.865 (±0.230) | 24.77 | 0.01139 |
15 | gpt-4.1-mini | 0.754 (±0.249) | 0.803 (±0.193) | 23.28 | 0.00347 |
16 | accounts/fireworks/models/llama4-scout-instruct-basic | 0.754 (±0.243) | 0.942 (±0.063) | 13.36 | 0.00087 |
17 | gpt-4o | 0.752 (±0.269) | 0.896 (±0.123) | 28.87 | 0.01469 |
18 | gpt-4o-mini | 0.728 (±0.241) | 0.850 (±0.128) | 18.96 | 0.00609 |
19 | claude-3-7-sonnet-20250219 | 0.646 (±0.397) | 0.758 (±0.297) | 57.96 | 0.01730 |
20 | gpt-4.1 | 0.637 (±0.301) | 0.787 (±0.185) | 35.37 | 0.01498 |
21 | google/gemma-3-27b-it | 0.604 (±0.342) | 0.788 (±0.297) | 23.16 | 0.00020 |
22 | microsoft/phi-4-multimodal-instruct | 0.589 (±0.273) | 0.820 (±0.197) | 14.00 | 0.00045 |
23 | qwen/qwen-2.5-vl-7b-instruct | 0.498 (±0.378) | 0.630 (±0.445) | 14.73 | 0.00056 |
24 | ds4sd/SmolDocling-256M-preview | 0.482 (±0.365) | 0.572 (±0.351) | 106.19 | 0.00000 |