Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions configs/_base_/datasets/omnibenchmarkv2_bs32_pil_resize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]

test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]

train_dataloader = dict(
batch_size=32,
num_workers=4,
dataset=dict(
type=dataset_type,
data_root='data/omnibenchmarkv2/data/activity',
ann_file='data/omnibenchmarkv2/meta/activity/train.txt',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)

val_dataloader = dict(
batch_size=32,
num_workers=4,
dataset=dict(
type=dataset_type,
data_root='data/omnibenchmarkv2/data/activity',
ann_file='data/omnibenchmarkv2/meta/activity/test.txt',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))

# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
_base_ = [
'../../_base_/datasets/omnibenchmarkv2_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../../_base_/default_runtime.py'
]

# dataset settings
data_preprocessor = dict(
num_classes=691,
)

train_dataloader = dict(batch_size=2048,
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/activity/meta/train.txt',
data_prefix='data/activity/images/'),
drop_last=True)
val_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/activity/meta/val.txt',
data_prefix='data/activity/images/'),
drop_last=False)
test_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/activity/meta/test.txt',
data_prefix='data/activity/images/'),
drop_last=False)

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
frozen_stages=12,
out_type='cls_token',
final_norm=True,
init_cfg=dict(type='Pretrained', checkpoint='/mnt/petrelfs/zhangyuanhan/weights/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth', prefix="backbone.")),
neck=dict(type='ClsBatchNormNeck', input_features=768),
head=dict(
type='VisionTransformerClsHead',
num_classes=691,
in_channels=768,
loss=dict(type='CrossEntropyLoss'),
init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]))

# optimizer
optim_wrapper = dict(
_delete_=True,
type='AmpOptimWrapper',
optimizer=dict(type='LARS', lr=6.4, weight_decay=0.0, momentum=0.9))

# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=80,
by_epoch=True,
begin=10,
end=90,
eta_min=0.0,
convert_to_iter_based=True)
]

# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=90,val_interval=10)

default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3),
logger=dict(type='LoggerHook', interval=10))

randomness = dict(seed=0, diff_rank_seed=True)
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
_base_ = [
'../../_base_/datasets/omnibenchmarkv2_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../../_base_/default_runtime.py'
]

# dataset settings
data_preprocessor = dict(
num_classes=646,
)

train_dataloader = dict(batch_size=2048,
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/bird/meta/train.txt',
data_prefix='data/bird/images/'),
drop_last=True)
val_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/bird/meta/val.txt',
data_prefix='data/bird/images/'),
drop_last=False)
test_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/bird/meta/test.txt',
data_prefix='data/bird/images/'),
drop_last=False)

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
frozen_stages=12,
out_type='cls_token',
final_norm=True,
init_cfg=dict(type='Pretrained', checkpoint='/mnt/petrelfs/zhangyuanhan/weights/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth', prefix="backbone.")),
neck=dict(type='ClsBatchNormNeck', input_features=768),
head=dict(
type='VisionTransformerClsHead',
num_classes=646,
in_channels=768,
loss=dict(type='CrossEntropyLoss'),
init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]))

# optimizer
optim_wrapper = dict(
_delete_=True,
type='AmpOptimWrapper',
optimizer=dict(type='LARS', lr=6.4, weight_decay=0.0, momentum=0.9))

# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=80,
by_epoch=True,
begin=10,
end=90,
eta_min=0.0,
convert_to_iter_based=True)
]

# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=90,val_interval=10)

default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=-1),
logger=dict(type='LoggerHook', interval=10))

randomness = dict(seed=0, diff_rank_seed=True)
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
_base_ = [
'../../_base_/datasets/omnibenchmarkv2_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../../_base_/default_runtime.py'
]

# dataset settings
data_preprocessor = dict(
num_classes=767,
)

train_dataloader = dict(batch_size=2048,
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/car/meta/train.txt',
data_prefix='data/car/images/'),
drop_last=True)
val_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/car/meta/val.txt',
data_prefix='data/car/images/'),
drop_last=False)
test_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/car/meta/test.txt',
data_prefix='data/car/images/'),
drop_last=False)

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
frozen_stages=12,
out_type='cls_token',
final_norm=True,
init_cfg=dict(type='Pretrained', checkpoint='/mnt/petrelfs/zhangyuanhan/weights/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth', prefix="backbone.")),
neck=dict(type='ClsBatchNormNeck', input_features=768),
head=dict(
type='VisionTransformerClsHead',
num_classes=767,
in_channels=768,
loss=dict(type='CrossEntropyLoss'),
init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]))

# optimizer
optim_wrapper = dict(
_delete_=True,
type='AmpOptimWrapper',
optimizer=dict(type='LARS', lr=6.4, weight_decay=0.0, momentum=0.9))

# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=80,
by_epoch=True,
begin=10,
end=90,
eta_min=0.0,
convert_to_iter_based=True)
]

# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=90,val_interval=10)

default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=-1),
logger=dict(type='LoggerHook', interval=10))

randomness = dict(seed=0, diff_rank_seed=True)
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
_base_ = [
'../../_base_/datasets/omnibenchmarkv2_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../../_base_/default_runtime.py'
]

# dataset settings
data_preprocessor = dict(
num_classes=190,
)

train_dataloader = dict(batch_size=2048,
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/consumer_goods/meta/train.txt',
data_prefix='data/consumer_goods/images/'),
drop_last=True)
val_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/consumer_goods/meta/val.txt',
data_prefix='data/consumer_goods/images/'),
drop_last=False)
test_dataloader = dict(
dataset=dict(
data_root='data/omnibenchmarkv2/',
ann_file='annotation/consumer_goods/meta/test.txt',
data_prefix='data/consumer_goods/images/'),
drop_last=False)

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
frozen_stages=12,
out_type='cls_token',
final_norm=True,
init_cfg=dict(type='Pretrained', checkpoint='/mnt/petrelfs/zhangyuanhan/weights/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth', prefix="backbone.")),
neck=dict(type='ClsBatchNormNeck', input_features=768),
head=dict(
type='VisionTransformerClsHead',
num_classes=190,
in_channels=768,
loss=dict(type='CrossEntropyLoss'),
init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]))

# optimizer
optim_wrapper = dict(
_delete_=True,
type='AmpOptimWrapper',
optimizer=dict(type='LARS', lr=6.4, weight_decay=0.0, momentum=0.9))

# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=80,
by_epoch=True,
begin=10,
end=90,
eta_min=0.0,
convert_to_iter_based=True)
]

# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=90,val_interval=10)

default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=-1),
logger=dict(type='LoggerHook', interval=10))

randomness = dict(seed=0, diff_rank_seed=True)
Loading