-
-
Notifications
You must be signed in to change notification settings - Fork 19.3k
BUG: for ordered categorical data implements correct computation of kendall/spearman correlations #62880
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
BUG: for ordered categorical data implements correct computation of kendall/spearman correlations #62880
Changes from 12 commits
1f8c628
906f1e4
497dc7e
583aca6
e069810
b90726f
65a506c
ab3b8b9
e93ed83
ec4d97e
ebfc3b0
8cfacef
7ef7fb2
588808a
c484552
216475c
e997747
4184167
8bcd3dc
2673281
ff48847
1c69e29
8b26a7d
a625520
259424e
f141e6a
d2d0f71
858d0c2
a8c88c7
1a472e3
71305aa
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -11680,6 +11680,10 @@ def corr( | |
| data = self._get_numeric_data() if numeric_only else self | ||
| cols = data.columns | ||
| idx = cols.copy() | ||
|
|
||
| if method in ("spearman", "kendall"): | ||
| data = data._transform_ord_cat_cols_to_coded_cols() | ||
|
|
||
| mat = data.to_numpy(dtype=float, na_value=np.nan, copy=False) | ||
|
|
||
| if method == "pearson": | ||
|
|
@@ -11973,6 +11977,8 @@ def corrwith( | |
| correl = num / dom | ||
|
|
||
| elif method in ["kendall", "spearman"] or callable(method): | ||
| left = left._transform_ord_cat_cols_to_coded_cols() | ||
| right = right._transform_ord_cat_cols_to_coded_cols() | ||
|
|
||
| def c(x): | ||
| return nanops.nancorr(x[0], x[1], method=method) | ||
|
|
@@ -12004,6 +12010,25 @@ def c(x): | |
|
|
||
| return correl | ||
|
|
||
| def _transform_ord_cat_cols_to_coded_cols(self) -> DataFrame: | ||
| """ | ||
| any ordered categorical columns are transformed to the respective | ||
| categorical codes while other columns remain untouched | ||
| """ | ||
| categ = self.select_dtypes("category") | ||
| if len(categ.columns) == 0: | ||
| return self | ||
|
|
||
| cols_convert = categ.loc[:, categ.agg(lambda x: x.cat.ordered)].columns | ||
|
|
||
| if len(cols_convert) > 0: | ||
| data = self.copy(deep=False) | ||
|
||
| data[cols_convert] = data[cols_convert].transform( | ||
| lambda x: x.cat.codes.replace(-1, np.nan) | ||
| ) | ||
|
||
| return data | ||
| return self | ||
|
|
||
| # ---------------------------------------------------------------------- | ||
| # ndarray-like stats methods | ||
|
|
||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,3 +1,5 @@ | ||
| from itertools import combinations | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
|
|
||
|
|
@@ -252,6 +254,46 @@ def test_corr_numeric_only(self, meth, numeric_only): | |
| with pytest.raises(ValueError, match="could not convert string to float"): | ||
| df.corr(meth, numeric_only=numeric_only) | ||
|
|
||
| @pytest.mark.parametrize("method", ["kendall", "spearman"]) | ||
| def test_corr_rank_ordered_categorical( | ||
| self, | ||
| method, | ||
| ): | ||
| pytest.importorskip("scipy") | ||
|
||
| df = DataFrame( | ||
| { | ||
| "ord_cat": Series( | ||
| pd.Categorical( | ||
| ["low", "m", "h", "vh"], | ||
| categories=["low", "m", "h", "vh"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
|
||
| "ord_cat_none": Series( | ||
| pd.Categorical( | ||
| ["low", "m", "h", None], | ||
| categories=["low", "m", "h"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "ord_int": Series([0, 1, 2, 3]), | ||
| "ord_float": Series([2.0, 3.0, 4.5, 6.5]), | ||
| "ord_float_nan": Series([2.0, 3.0, 4.5, np.nan]), | ||
|
||
| "ord_cat_shuff": Series( | ||
| pd.Categorical( | ||
| ["m", "h", "vh", "low"], | ||
| categories=["low", "m", "h", "vh"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "ord_int_shuff": Series([2, 3, 0, 1]), | ||
| } | ||
| ) | ||
| corr_calc = df.corr(method=method) | ||
| for col1, col2 in combinations(df.columns, r=2): | ||
| corr_expected = df[col1].corr(df[col2], method=method) | ||
| tm.assert_almost_equal(corr_calc[col1][col2], corr_expected) | ||
|
|
||
|
|
||
| class TestDataFrameCorrWith: | ||
| @pytest.mark.parametrize( | ||
|
|
@@ -493,3 +535,50 @@ def test_cov_with_missing_values(self): | |
| result2 = df.dropna().cov() | ||
| tm.assert_frame_equal(result1, expected) | ||
| tm.assert_frame_equal(result2, expected) | ||
|
|
||
| @pytest.mark.parametrize("method", ["kendall", "spearman"]) | ||
| def test_corr_rank_ordered_categorical( | ||
| self, | ||
| method, | ||
| ): | ||
| pytest.importorskip("scipy") | ||
| df1 = DataFrame( | ||
| { | ||
| "a": Series( | ||
| pd.Categorical( | ||
| ["low", "m", "h", "vh"], | ||
| categories=["low", "m", "h", "vh"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "b": Series( | ||
| pd.Categorical( | ||
| ["low", "m", "h", None], | ||
| categories=["low", "m", "h"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "c": Series([0, 1, 2, 3]), | ||
| "d": Series([2.0, 3.0, 4.5, 6.5]), | ||
| } | ||
| ) | ||
|
|
||
| df2 = DataFrame( | ||
| { | ||
| "a": Series([2.0, 3.0, 4.5, np.nan]), | ||
| "b": Series( | ||
| pd.Categorical( | ||
| ["m", "h", "vh", "low"], | ||
| categories=["low", "m", "h", "vh"], | ||
| ordered=True, | ||
| ) | ||
| ), | ||
| "c": Series([2, 3, 0, 1]), | ||
| "d": Series([2.0, 3.0, 4.5, 6.5]), | ||
| } | ||
| ) | ||
|
|
||
| corr_calc = df1.corrwith(df2, method=method) | ||
| for col in df1.columns: | ||
| corr_expected = df1[col].corr(df2[col], method=method) | ||
| tm.assert_almost_equal(corr_calc.get(col), corr_expected) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -184,3 +184,77 @@ def test_corr_callable_method(self, datetime_series): | |
| df = pd.DataFrame([s1, s2]) | ||
| expected = pd.DataFrame([{0: 1.0, 1: 0}, {0: 0, 1: 1.0}]) | ||
| tm.assert_almost_equal(df.transpose().corr(method=my_corr), expected) | ||
|
|
||
| @pytest.mark.parametrize("method", ["kendall", "spearman"]) | ||
| def test_corr_rank_ordered_categorical( | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This test is pretty long, to the point where its unclear what its intent is. Maybe its worth breaking up into a few tests? Or adding parameterization?
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. fixed |
||
| self, | ||
| method, | ||
| ): | ||
| stats = pytest.importorskip("scipy.stats") | ||
| method_scipy_func = {"kendall": stats.kendalltau, "spearman": stats.spearmanr} | ||
| ser_ord_cat = Series( | ||
| pd.Categorical( | ||
| ["low", "med", "high", "very_high"], | ||
| categories=["low", "med", "high", "very_high"], | ||
| ordered=True, | ||
| ) | ||
| ) | ||
| ser_ord_cat_codes = ser_ord_cat.cat.codes.replace(-1, np.nan) | ||
| ser_ord_int = Series([0, 1, 2, 3]) | ||
| ser_ord_float = Series([2.0, 3.0, 4.5, 6.5]) | ||
|
|
||
| corr_calc = ser_ord_cat.corr(ser_ord_int, method=method) | ||
| corr_expected = method_scipy_func[method]( | ||
| ser_ord_cat_codes, ser_ord_int, nan_policy="omit" | ||
| )[0] | ||
| tm.assert_almost_equal(corr_calc, corr_expected) | ||
|
|
||
| corr_calc = ser_ord_cat.corr(ser_ord_float, method=method) | ||
| corr_expected = method_scipy_func[method]( | ||
| ser_ord_cat_codes, ser_ord_float, nan_policy="omit" | ||
| )[0] | ||
| tm.assert_almost_equal(corr_calc, corr_expected) | ||
|
|
||
| corr_calc = ser_ord_cat.corr(ser_ord_cat, method=method) | ||
| corr_expected = method_scipy_func[method]( | ||
| ser_ord_cat_codes, ser_ord_cat_codes, nan_policy="omit" | ||
| )[0] | ||
| tm.assert_almost_equal(corr_calc, corr_expected) | ||
|
|
||
| ser_ord_cat_shuff = Series( | ||
| pd.Categorical( | ||
| ["high", "low", "very_high", "med"], | ||
| categories=["low", "med", "high", "very_high"], | ||
| ordered=True, | ||
| ) | ||
| ) | ||
| ser_ord_cat_shuff_codes = ser_ord_cat_shuff.cat.codes.replace(-1, np.nan) | ||
|
|
||
| corr_calc = ser_ord_cat_shuff.corr(ser_ord_cat, method=method) | ||
| corr_expected = method_scipy_func[method]( | ||
| ser_ord_cat_shuff_codes, ser_ord_cat_codes, nan_policy="omit" | ||
| )[0] | ||
| tm.assert_almost_equal(corr_calc, corr_expected) | ||
|
|
||
| corr_calc = ser_ord_cat_shuff.corr(ser_ord_cat_shuff, method=method) | ||
| corr_expected = method_scipy_func[method]( | ||
| ser_ord_cat_shuff_codes, ser_ord_cat_shuff_codes, nan_policy="omit" | ||
| )[0] | ||
| tm.assert_almost_equal(corr_calc, corr_expected) | ||
|
|
||
| ser_ord_cat_with_nan = Series( | ||
| pd.Categorical( | ||
| ["h", "low", "vh", None, "m"], | ||
| categories=["low", "m", "h", "vh"], | ||
| ordered=True, | ||
| ) | ||
| ) | ||
| ser_ord_cat_shuff_with_nan_codes = ser_ord_cat_with_nan.cat.codes.replace( | ||
| -1, np.nan | ||
| ) | ||
| ser_ord_int = Series([2, 0, 1, 3, None]) | ||
| corr_calc = ser_ord_cat_with_nan.corr(ser_ord_int, method=method) | ||
| corr_expected = method_scipy_func[method]( | ||
| ser_ord_cat_shuff_with_nan_codes, ser_ord_int, nan_policy="omit" | ||
| )[0] | ||
| tm.assert_almost_equal(corr_calc, corr_expected) | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think we can simplify this a bit and make it more performant.
Can you move this to
pandas.core.methods.corr(this file does not yet exist) and make it take a DataFrame as input - we can move the remaining parts of the implementation in a later PR.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done