Implementing deep learning algorithms in python with numpy.
- Numpy
- Matplotlib (for Loss plots only)
Implementation -> logistic-regression.ipynb
ReLUin hidden layers andSigmoidin the output layer.- Number of layers and number of units in each layer can be set using
layers_dimshyper-parameter. - Uses sigmoid cross entropy for loss computation.
- Vectorized implementation.
Implementation -> softmax-classification.ipynb
ReLUin hidden layers andSoftmaxin the output layer.- Number of layers and number of units in each layer can be set using
layers_dimshyper-parameter. - Uses softmax cross entropy for loss computation.
- Vectorized implementation
Implementation -> vanilla-char-rnn.ipynb
tanhas activation for hidden state,Softmaxat output.Adagradoptimization.- Uses softmax cross entropy for loss computation.