- 
                Notifications
    
You must be signed in to change notification settings  - Fork 173
 
[ENH] Implementing Adorn Functions #1439
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
          
     Open
      
      
            Sarra99
  wants to merge
  8
  commits into
  pyjanitor-devs:dev
  
    
      
        
          
  
    
      Choose a base branch
      
     
    
      
        
      
      
        
          
          
        
        
          
            
              
              
              
  
           
        
        
          
            
              
              
           
        
       
     
  
        
          
            
          
            
          
        
       
    
      
from
Sarra99:SarraNEBLI/adorn_functions
  
      
      
   
  
    
  
  
  
 
  
      
    base: dev
Could not load branches
            
              
  
    Branch not found: {{ refName }}
  
            
                
      Loading
              
            Could not load tags
            
            
              Nothing to show
            
              
  
            
                
      Loading
              
            Are you sure you want to change the base?
            Some commits from the old base branch may be removed from the timeline,
            and old review comments may become outdated.
          
          
  
     Open
                    Changes from all commits
      Commits
    
    
            Show all changes
          
          
            8 commits
          
        
        Select commit
          Hold shift + click to select a range
      
      adb4ba6
              
                Implementation and tests of tabyl function in Python
              
              
                 b296674
              
                Implementation of adorn_totals and adorn_percentages with tests
              
              
                 d7a475f
              
                Adding adorn_pct_formatting and adorn_ns in adorn_percentages with tests
              
              
                 9ae1878
              
                Examples of adorn_functions
              
              
                 2f30d40
              
                Fixing documentation
              
              
                 7ba6ac6
              
                update AUTHORS.md file
              
              
                 35d9300
              
                Fixing CI errors
              
              
                 add19e9
              
                Fixing code coverage
              
              
                 File filter
Filter by extension
Conversations
          Failed to load comments.   
        
        
          
      Loading
        
  Jump to
        
          Jump to file
        
      
      
          Failed to load files.   
        
        
          
      Loading
        
  Diff view
Diff view
There are no files selected for viewing
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,251 @@ | ||
| from typing import Optional | ||
| 
     | 
||
| import pandas as pd | ||
| 
     | 
||
| 
     | 
||
| def tabyl( | ||
| df: pd.DataFrame, | ||
| col1: str, | ||
| col2: Optional[str] = None, | ||
| col3: Optional[str] = None, | ||
| show_counts: bool = True, | ||
| show_percentages: bool = False, | ||
| percentage_axis: Optional[str] = None, # 'row', 'col', or 'all' | ||
| ) -> pd.DataFrame: | ||
| """ | ||
| Create a summary table similar to R's `tabyl`. | ||
| 
     | 
||
| Args: | ||
| df: Input DataFrame. | ||
| col1: Name of the first column for grouping (required). | ||
| col2: Name of the second column for grouping (optional). | ||
| col3: Name of the third column for grouping (optional). | ||
| show_counts: Whether to show raw counts in the table. | ||
| show_percentages: Whether to show percentages in the table. | ||
| percentage_axis: Axis for percentages ('row', 'col', or 'all'). | ||
| Only applies if `show_percentages` is True. | ||
| 
     | 
||
| Returns: | ||
| A DataFrame representing the summary table. | ||
| 
     | 
||
| Example : | ||
| >>> data = { | ||
| ... "Category": ["A", "A", "B", "B", "C", "C", "A", "B", "C", "A"], | ||
| ... "Subcategory": ["X", "Y", "X", "Y", "X", "Y", "X", "Y", "X", "X"], | ||
| ... "Region": ["North", "South", "East", "West", "North", | ||
| ... "South", "East", "West", "North", "East"], | ||
| ... "Value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], | ||
| ... } | ||
| >>> df = pd.DataFrame(data) | ||
| 
     | 
||
| >>> result = tabyl(df, "Category", "Subcategory", show_percentages=True, | ||
| ... percentage_axis="row") | ||
| >>> print(result) | ||
| Subcategory Category X Y | ||
| 0 A 3.0 (75.00%) 1.0 (25.00%) | ||
| 1 B 1.0 (33.33%) 2.0 (66.67%) | ||
| 2 C 2.0 (66.67%) 1.0 (33.33%) | ||
| 
     | 
||
| >>> result = tabyl(df, "Category", "Subcategory", | ||
| ... show_percentages=True, percentage_axis="col") | ||
| >>> print(result) | ||
| Subcategory Category X Y | ||
| 0 A 3.0 (50.00%) 1.0 (25.00%) | ||
| 1 B 1.0 (16.67%) 2.0 (50.00%) | ||
| 2 C 2.0 (33.33%) 1.0 (25.00%) | ||
| 
     | 
||
| """ | ||
| 
     | 
||
| if col1 not in df.columns: | ||
| raise ValueError(f"Column '{col1}' is not in the DataFrame.") | ||
| if col2 and col2 not in df.columns: | ||
| raise ValueError(f"Column '{col2}' is not in the DataFrame.") | ||
| if col3 and col3 not in df.columns: | ||
| raise ValueError(f"Column '{col3}' is not in the DataFrame.") | ||
| 
     | 
||
| # Step 1: Group and count | ||
| group_cols = [col1] | ||
| if col2: | ||
| group_cols.append(col2) | ||
| if col3: | ||
| group_cols.append(col3) | ||
| 
     | 
||
| grouped = df.groupby(group_cols).size().reset_index(name="count") | ||
| 
     | 
||
| # Step 2: Pivot for 3D (col1, col2, col3) | ||
| if col2 and col3: | ||
| pivot = grouped.pivot_table( | ||
| index=col1, | ||
| columns=[col2, col3], # Creating 2-level columns for col2 and col3 | ||
| values="count", | ||
| aggfunc="sum", | ||
| fill_value=0, | ||
| ) | ||
| elif col2: | ||
| pivot = grouped.pivot_table( | ||
| index=col1, | ||
| columns=col2, | ||
| values="count", | ||
| aggfunc="sum", | ||
| fill_value=0, | ||
| ) | ||
| else: | ||
| pivot = grouped.set_index(col1)["count"].to_frame() | ||
| 
     | 
||
| if show_percentages: | ||
| pivot = pivot.astype( | ||
| float | ||
| ) # Convert to float before calculating percentages | ||
| 
     | 
||
| if percentage_axis == "row": | ||
| percentages = pivot.div(pivot.sum(axis=1), axis=0) | ||
| elif percentage_axis == "col": | ||
| percentages = pivot.div(pivot.sum(axis=0), axis=1) | ||
| elif percentage_axis == "all": | ||
| total = pivot.values.sum() | ||
| percentages = pivot / total | ||
| else: | ||
| raise ValueError( | ||
| "`percentage_axis` must be one of 'row', 'col', or 'all'." | ||
| ) | ||
| 
     | 
||
| percentages = percentages.applymap(lambda x: f"{x:.2%}") | ||
| 
     | 
||
| if show_counts: | ||
| pivot = pivot.astype(str) + " (" + percentages + ")" | ||
| else: | ||
| pivot = percentages | ||
| 
     | 
||
| return pivot.reset_index() | ||
| 
     | 
||
| 
     | 
||
| def adorn_totals(df, col1, col2, axis=0): | ||
| """ | ||
| Adds a 'Total' row or column to a crosstab generated by tabyl. | ||
| 
     | 
||
| :param df: DataFrame used to generate the crosstab | ||
| :param col1: First column to create the crosstab | ||
| :param col2: Second column to create the crosstab | ||
| :param axis: 0 to add a 'Total' row, 1 to add a 'Total' column | ||
| :return: DataFrame with a 'Total' row/column added | ||
| 
     | 
||
| Example: | ||
| >>> data = { | ||
| ... "Category": ["A", "B", "A", "B", "A", "B", "A", "B"], | ||
| ... "Subcategory": ["X", "X", "Y", "Y", "X", "X", "Y", "Y"], | ||
| ... "Value": [1, 2, 3, 4, 5, 6, 7, 8], | ||
| ... } | ||
| >>> df = pd.DataFrame(data) | ||
| 
     | 
||
| >>> result = adorn_totals(df, "Category", "Subcategory", axis=0) | ||
| >>> print(result) | ||
| Subcategory Category X Y | ||
| 0 A 2 2 | ||
| 1 B 2 2 | ||
| Total NaN 4 4 | ||
| 
     | 
||
| >>> result = adorn_totals(df, "Category", "Subcategory", axis=1) | ||
| >>> print(result) | ||
| Subcategory Category X Y Total | ||
| 0 A 2 2 4 | ||
| 1 B 2 2 4 | ||
| 
     | 
||
| """ | ||
| 
     | 
||
| # Generate the crosstab using tabyl with the two specified columns | ||
| pivot = tabyl(df, col1, col2) | ||
| 
     | 
||
| if pivot.empty: # If the crosstab is empty, return it as-is | ||
| return pivot | ||
| 
     | 
||
| if axis == 0: # Add a 'Total' row | ||
| # Select only numeric columns and compute their sum across rows | ||
| total_row = pivot.select_dtypes(include="number").sum(axis=0) | ||
| total_row.name = "Total" # Set the name of the total row | ||
| # Concatenate the total row to the crosstab | ||
| pivot = pd.concat([pivot, total_row.to_frame().T]) | ||
| elif axis == 1: # Add a 'Total' column | ||
| # Select only numeric columns and compute their sum across columns | ||
| total_col = pivot.select_dtypes(include="number").sum(axis=1) | ||
| pivot["Total"] = total_col # Add the total column to the crosstab | ||
| else: | ||
| raise ValueError( | ||
| "The 'axis' argument must be 0 (to add a row) or 1 (to add a column)" | ||
| ) | ||
| 
     | 
||
| return pivot | ||
| 
     | 
||
| 
     | 
||
| def adorn_percentages( | ||
| df, col1, col2, axis="row", fmt=True, include_ns=False, decimal_places=1 | ||
| ): | ||
| """ | ||
| Adds percentages to a crosstab generated by tabyl, with options to format | ||
| and include raw counts, and also control the behavior | ||
| of adorn_pct_formatting and adorn_ns. | ||
| 
     | 
||
| :param df: DataFrame used to generate the crosstab | ||
| :param col1: First column to create the crosstab | ||
| :param col2: Second column to create the crosstab | ||
| :param axis: 'row' to add percentages by row, 'col' for column percentages, | ||
| 'all' for global percentages | ||
| :param fmt: If True, formats percentages as strings | ||
| (e.g., "12.5%"), else returns numeric values. | ||
| :param include_ns: If True, includes raw counts alongside percentages. | ||
| :param decimal_places: Number of decimal places for the percentages | ||
| :param thousand_separator: Whether to add a thousand separator to the counts | ||
| :param percent_format: Whether to format as percentages | ||
| :return: DataFrame with percentages and optional formatting and raw counts | ||
| 
     | 
||
| """ | ||
| # Generate the crosstab using tabyl with the two specified columns | ||
| pivot = pd.pivot_table( | ||
| df, | ||
| values="Value", | ||
| index=col1, | ||
| columns=col2, | ||
| aggfunc="sum", | ||
| fill_value=0, | ||
| ) | ||
| 
     | 
||
| if pivot.empty: # If the crosstab is empty, return it as-is | ||
| return pivot | ||
| 
     | 
||
| # Separate numeric columns from the rest of the data | ||
| numeric_cols = pivot.select_dtypes(include="number") | ||
| 
     | 
||
| # Calculate the percentages based on the axis | ||
| if axis == "row": | ||
| percentages = numeric_cols.div(numeric_cols.sum(axis=1), axis=0) | ||
| elif axis == "col": | ||
| percentages = numeric_cols.div(numeric_cols.sum(axis=0), axis=1) | ||
| elif axis == "all": | ||
| total_sum = numeric_cols.sum().sum() | ||
| percentages = numeric_cols / total_sum | ||
| else: | ||
| raise ValueError("The 'axis' argument must be 'row', 'col', or 'all'.") | ||
| 
     | 
||
| # Format the percentages if requested | ||
| if fmt: | ||
| percentages = percentages.applymap( | ||
| lambda x: f"{x * 100:.{decimal_places}f}%" if pd.notnull(x) else x | ||
| ) | ||
| else: | ||
| percentages = percentages.applymap( | ||
| lambda x: f"{x:.{decimal_places}f}" if pd.notnull(x) else x | ||
| ) | ||
| 
     | 
||
| # Combine percentages with raw counts if requested (adorn_ns functionality) | ||
| if include_ns: | ||
| raw_counts = numeric_cols | ||
| percentages_with_ns = ( | ||
| percentages.astype(str) + " (" + raw_counts.astype(str) + ")" | ||
| if fmt | ||
| else percentages.astype(str) + " (" + raw_counts.astype(str) + ")" | ||
| ) | ||
| percentages = percentages_with_ns | ||
| 
     | 
||
| # Reattach the categories and the percentages to form the final DataFrame | ||
| result = pd.concat([pivot.iloc[:, :1], percentages], axis=1) | ||
| 
     | 
||
| return result | 
      
      Oops, something went wrong.
        
    
  
      
      Oops, something went wrong.
        
    
  
  Add this suggestion to a batch that can be applied as a single commit.
  This suggestion is invalid because no changes were made to the code.
  Suggestions cannot be applied while the pull request is closed.
  Suggestions cannot be applied while viewing a subset of changes.
  Only one suggestion per line can be applied in a batch.
  Add this suggestion to a batch that can be applied as a single commit.
  Applying suggestions on deleted lines is not supported.
  You must change the existing code in this line in order to create a valid suggestion.
  Outdated suggestions cannot be applied.
  This suggestion has been applied or marked resolved.
  Suggestions cannot be applied from pending reviews.
  Suggestions cannot be applied on multi-line comments.
  Suggestions cannot be applied while the pull request is queued to merge.
  Suggestion cannot be applied right now. Please check back later.
  
    
  
    
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@Sarra99 would you be kind enough to decorate the functions here as a dataframe method, like we do in other files?