Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions dataset_reader/ann_h5_reader.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import itertools
from typing import Iterator

import h5py
Expand All @@ -14,17 +15,18 @@ def __init__(self, path, normalize=False):

def read_queries(self) -> Iterator[Query]:
data = h5py.File(self.path)
distances = data["distances"] if "distances" in data else itertools.repeat(None)

for vector, expected_result, expected_scores in zip(
data["test"], data["neighbors"], data["distances"]
data["test"], data["neighbors"], distances
):
if self.normalize:
vector /= np.linalg.norm(vector)
yield Query(
vector=vector.tolist(),
meta_conditions=None,
expected_result=expected_result.tolist(),
expected_scores=expected_scores.tolist(),
expected_scores=expected_scores.tolist() if expected_scores is not None else None,
)

def read_data(self, *args, **kwargs) -> Iterator[Record]:
Expand Down
22 changes: 21 additions & 1 deletion datasets/datasets.json
Original file line number Diff line number Diff line change
Expand Up @@ -1296,5 +1296,25 @@
"path": "random-100-match-kw-small-vocab/random_keywords_1m_vocab_10_no_filters",
"vector_count": 100,
"description": "Synthetic data"
},
{
"name": "cohere-768-1M",
"vector_size": 768,
"distance": "dot",
"type": "h5",
"path": "cohere-768-1M/cohere-768-1M.hdf5",
"link": "https://dbyiw3u3rf9yr.cloudfront.net/corpora/vectorsearch/cohere-wikipedia-22-12-en-embeddings/documents-1m.hdf5.bz2",
"vector_count": 1000000,
"description": "Wikipedia embeddings"
},
{
"name": "cohere-768-10M",
"vector_size": 768,
"distance": "dot",
"type": "h5",
"path": "cohere-768-10M/cohere-768-10M.hdf5",
"link": "https://dbyiw3u3rf9yr.cloudfront.net/corpora/vectorsearch/cohere-wikipedia-22-12-en-embeddings/documents-10m.hdf5.bz2",
"vector_count": 10000000,
"description": "Wikipedia embeddings"
}
]
]
Loading