Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,11 +36,11 @@ For the categorization and more details, please refer to our survey paper [**Adv
3. **Black-Box Attacks against RNN based Malware Detection Algorithms**. *Weiwei Hu, Ying Tan*. AAAI Workshops 2018. `Black-box` [[pdf](https://www.aaai.org/ocs/index.php/WS/AAAIW18/paper/viewPaper/16594)]
4. **Enhancing Machine Learning based Malware Detection Model by Reinforcement Learning**. *Cangshuai Wu, Jiangyong Shi, Yuexiang Yang, Wenhua Li*. International Conference on Communication and Network Security 2018. `Black-box` [[pdf](https://dl.acm.org/doi/pdf/10.1145/3290480.3290494)]
5. **Static Malware Detection & Subterfuge: Quantifying the Robustness of Machine Learning and Current Anti-virus**. *William Fleshman, Edward Raff, Richard Zak, Mark McLean, Charles Nicholas*. International Conference on Malicious and Unwanted Software (MALWARE) 2018. `Black-box` [[pdf](https://ieeexplore.ieee.org/abstract/document/8659360)]
6. **Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables**. *Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto, Claudia Eckert, Fabio Roli*. European Signal Processing Conference 2018. `White-box` [[pdf](https://ieeexplore.ieee.org/abstract/document/8553214)]
7. **Exploring Adversarial Examples in Malware Detection**. *Octavian Suciu, Scott E. Coull, Jeffrey Johns*. Arxiv 2018. `White-box` [[pdf](https://arxiv.org/pdf/1810.08280.pdf)]
6. **Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables**. *Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto, Claudia Eckert, Fabio Roli*. European Signal Processing Conference 2018. `White-box` [[pdf](https://ieeexplore.ieee.org/abstract/document/8553214)] [[code](https://github.com/yuxiaorun/malconv-adversarial)]
7. **Exploring Adversarial Examples in Malware Detection**. *Octavian Suciu, Scott E. Coull, Jeffrey Johns*. 2019 IEEE Security and Privacy Workshops (SPW). `White-box` [[pdf](https://arxiv.org/pdf/1810.08280.pdf)]
8. **Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples**. *Felix Kreuk, Assi Barak, Shir Aviv, Moran Baruch, Benny Pinkas, Joseph Keshet*. Arxiv 2018. `White-box` [[pdf](https://arxiv.org/pdf/1802.04528.pdf)]
9. **Adversarial Deep Learning for Robust Detection of Binary Encoded Malware**. *Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, Una-May O’Reilly*. IEEE Security and Privacy
Workshops 2018. `White-box` [[pdf](https://arxiv.org/pdf/1801.02950.pdf)][[code](https://github.com/ALFA-group/robust-adv-malware-detection)]
Workshops 2018. `White-box` [[pdf](https://arxiv.org/pdf/1801.02950.pdf)] [[code](https://github.com/ALFA-group/robust-adv-malware-detection)]

### 2019:

Expand All @@ -51,9 +51,9 @@ For the categorization and more details, please refer to our survey paper [**Adv
5. **Improved MalGAN: Avoiding Malware Detector by Leaning Cleanware Features**. *Masataka Kawai, Kaoru Ota, Mianxing Dong*. International Conference on Artificial Intelligence in Information and Communication 2019. `Black-box` [[pdf](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8669079)]
6. **Evading API Call Sequence Based Malware Classifiers**. *FenilFadadu, AnandHanda, NiteshKumar SandeepKumarShukla*. The 21st International Conference on Information and Communications Security 2019. `Black-box` [[pdf](https://link.springer.com/chapter/10.1007/978-3-030-41579-2_2)]
7. **Shallow Security: on the Creation of Adversarial Variants to Evade Machine Learning-Based Malware Detectors**. *Fabricio Ceschin, Marcus Botacin, Heitor Murilo Gomes, L. S. Oliveira, A. Grégio*. Reversing and Offensive-Oriented Trends Symposium (ROOTS) 2019. `Black-box` [[pdf](https://github.com/marcusbotacin/Dropper/tree/master/paper)] [[code](https://github.com/marcusbotacin/Dropper)]
8. **Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes**. *Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, Saurabh Shintre*. Arxiv 2019. `Black-box and White-box` [[pdf](https://arxiv.org/pdf/1912.09064.pdf)] [[code](https://github.com/pwwl/enhanced-binary-diversification)]
8. **Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes**. *Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, Saurabh Shintre*. Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security. `Black-box and White-box` [[pdf](https://arxiv.org/pdf/1912.09064.pdf)] [[code](https://github.com/pwwl/enhanced-binary-diversification)]
9. **Adversarial Examples for CNN-Based Malware Detectors**. *Bingcai Chen, Zhongru Ren, Chao Yu, Iftikhar Hussain, Jintao Liu*. IEEE Access 2019. `Black-box and White-box` [[pdf](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8703786&tag=1)]
10. **Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries**. *Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, Alessandro Armando*. Arxiv 2019. `White-box` [[pdf](https://arxiv.org/pdf/1901.03583.pdf)]
10. **Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries**. *Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, Alessandro Armando*. Arxiv 2019. `White-box` [[pdf](https://arxiv.org/pdf/1901.03583.pdf)] [[code](https://github.com/pralab/secml_malware)]
11. **COPYCAT: Practical Adversarial Attacks on Visualization-based Malware Detection**. *Aminollah Khormali, Ahmed Abusnaina, Songqing Chen, DaeHun Nyang, Aziz Mohaisen*. Arxiv 2019. `Black-box and White-box` [[pdf](https://arxiv.org/pdf/1909.09735.pdf)]
12. **Generation & Evaluation of Adversarial Examples for Malware Obfuscation**. *Daniel Park, Haidar Khan, Bulent Yener*. IEEE International Conference On Machine Learning And Applications 2019. `Black-box and White-box` [[pdf](https://ieeexplore.ieee.org/abstract/document/8999277)]

Expand All @@ -62,7 +62,7 @@ For the categorization and more details, please refer to our survey paper [**Adv
1. **Query-Efficient Black-Box Attack Against Sequence-Based Malware Classifiers**. *Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, Lior Rokach*. ACSAC 2020: Annual Computer Security Applications Conference. `Black-box` [[pdf](https://dl.acm.org/doi/pdf/10.1145/3427228.3427230)]
2. **MalFox: Camouflaged Adversarial Malware Example Generation Based on C-GANs Against Black-Box Detectors**. *Fangtian Zhong, Xiuzhen Cheng, Dongxiao Yu, Bei Gong, Shuaiwen Song, Jiguo Yu*. Arxiv 2020. `Black-box` [[pdf](https://arxiv.org/pdf/2011.01509.pdf)]
3. **Generating Adversarial Examples for Static PE Malware Detector Based on Deep Reinforcement Learning**. *Jun Chen, Jingfei Jiang, Rongchun Li, Yong Dou*. Journal of Physics: Conference Series 2020. `Black-box` [[pdf](https://iopscience.iop.org/article/10.1088/1742-6596/1575/1/012011/pdf)]
4. **Semantic-preserving Reinforcement Learning Attack Against Graph Neural Networks for Malware Detection**. *Lan Zhang, Peng Liu, Yoon-Ho Choi*. Arxiv 2020. `Black-box` [[pdf](https://arxiv.org/pdf/2009.05602.pdf)]
4. **Semantic-preserving Reinforcement Learning Attack Against Graph Neural Networks for Malware Detection**. *Lan Zhang, Peng Liu, Yoon-Ho Choi*. IEEE Transactions on Dependable and Secure Computing. `Black-box` [[pdf](https://arxiv.org/pdf/2009.05602.pdf)]
5. **Black-box Adversarial Attacks Against Deep Learning Based Malware Binaries Detection with GAN**. *Junkun Yuan, Shaofang Zhou, Lanfen Lin, Feng Wang, Jia Cui*. European Conference on Artificial Intelligence 2020. `Black-box` [[pdf](http://ecai2020.eu/papers/1118_paper.pdf)]
6. **MDEA: Malware Detection with Evolutionary Adversarial Learning**. *Xiruo Wang, Risto Miikkulainen*. IEEE Congress on Evolutionary Computation 2020. `Black-box` [[pdf](https://ieeexplore.ieee.org/abstract/document/9185810)]
7. **MAB-Malware: A Reinforcement Learning Framework for Attacking Static Malware Classifiers**. *Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, Heng Yin*. Arxiv 2020. `Black-box` [[pdf](https://arxiv.org/pdf/2003.03100.pdf)] [[code](https://github.com/bitsecurerlab/adversarial_malware.git)]
Expand All @@ -82,7 +82,7 @@ For the categorization and more details, please refer to our survey paper [**Adv

## 3. Defense Papers [[Back to Top:point_up:](#awesome-resources-for-adversarial-attacks-and-defenses-for-windows-pe-malware-detection)]

1. **Against All Odds: Winning the Defense Challenge in an Evasion Competition with Diversification**. *Erwin Quiring, Lukas Pirch, Michael Reimsbach, Daniel Arp, Konrad Rieck*. Arxiv 2020. [[pdf](https://arxiv.org/abs/2010.09569)]
1. **Against All Odds: Winning the Defense Challenge in an Evasion Competition with Diversification**. *Erwin Quiring, Lukas Pirch, Michael Reimsbach, Daniel Arp, Konrad Rieck*. Arxiv 2020. [[pdf](https://arxiv.org/abs/2010.09569)] [[code](https://github.com/EQuiw/2020-evasion-competition)]
2. **Soteria: Detecting Adversarial Examples in Control Flow Graph-based Malware Classifiers**. *Hisham Alasmary, Ahmed Abusnaina, Rhongho Jang, Mohammed Abuhamad, Afsah Anwar, DaeHun Nyang, David Mohaisen*. IEEE International Conference on Distributed Computing Systems (ICDCS) 2020. [[pdf](http://seal.cs.ucf.edu/doc/icdcs20aml.pdf)]

## 4. Other Papers [[Back to Top:point_up:](#awesome-resources-for-adversarial-attacks-and-defenses-for-windows-pe-malware-detection)]
Expand Down