vjhgh
Artificial Intelligence (AI)
β
βββ Machine Learning (ML)
β β
β βββ Supervised Learning
β β βββ Regression
β β β βββ Linear Regression
β β β βββ Polynomial Regression
β β β βββ Ridge/Lasso Regression
β β βββ Classification
β β βββ Logistic Regression
β β βββ Decision Tree Classifier
β β βββ Random Forest
β β βββ K-Nearest Neighbors (KNN)
β β βββ Support Vector Machine (SVM)
β β βββ Naive Bayes
β β
β βββ Unsupervised Learning
β β βββ Clustering
β β β βββ K-Means Clustering
β β β βββ DBSCAN
β β β βββ Hierarchical Clustering
β β βββ Dimensionality Reduction
β β β βββ PCA (Principal Component Analysis)
β β β βββ t-SNE
β β β βββ Autoencoders (Neural Net based)
β β βββ Association Rule Learning
β β βββ Apriori
β β βββ Eclat
β β
β βββ Reinforcement Learning
β | βββ Model-Free Methods
β | β βββ Q-Learning
β | β βββ SARSA
β | βββ Deep Reinforcement Learning
β | βββ Deep Q-Network (DQN)
β | βββ Proximal Policy Optimization (PPO)
β | βββ A3C (Asynchronous Advantage Actor-Critic)
β |
| |
| βββ Federated Learning
β β βββ ML on decentralized data (e.g., smartphones)
β β
β βββ Transfer Learning
β β βββ Uses a pre-trained model on new tasks
β β βββ e.g., ResNet, BERT, GPT fine-tuning
β β
β βββ Meta Learning
β βββ "Learning to learn" (e.g., few-shot learning)
|
|
|
βββ Neural Networks (Subset of ML)
β
βββ Shallow Neural Networks
β βββ Single Hidden Layer Perceptron
β
βββ Deep Learning (Deep Neural Networks)
β
βββ Feedforward Neural Network (FNN)
β βββ Also called MLP (Multilayer Perceptron)
β
βββ Convolutional Neural Network (CNN)
β βββ Image Classification
β βββ Object Detection
β βββ Image Segmentation
β
βββ Recurrent Neural Network (RNN)
β βββ LSTM (Long Short-Term Memory)
β βββ GRU (Gated Recurrent Unit)
β βββ Applications: time series, speech, NLP
β
βββ Transformer Networks
β βββ BERT
β βββ GPT (like ChatGPT)
β βββ Used in: NLP, translation, summarization
β
βββ Autoencoders
β βββ Denoising Autoencoder
β βββ Variational Autoencoder (VAE)
β
βββ Generative Adversarial Networks (GANs)
βββ Generator
βββ Discriminator
Encoders
β
βββ 1. Categorical Encoders
β β
β βββ 1.1 Label Encoding
β β βββ Assigns a unique integer to each category
β β Example: red=0, green=1, blue=2
β β
β βββ 1.2 One-Hot Encoding
β β βββ Creates binary columns for each category
β β Example: red = [1, 0, 0], green = [0, 1, 0]
β β
β βββ 1.3 Ordinal Encoding
β β βββ Assigns ordered integers based on rank/priority
β β Example: small=1, medium=2, large=3
β β
β βββ 1.4 Binary Encoding
β β βββ Converts categories to binary code
β β More compact than One-Hot for high-cardinality data
β β
β βββ 1.5 Frequency Encoding
β β βββ Replaces category with frequency count
β β Example: red=30, green=20 (based on occurrence)
β β
β βββ 1.6 Count Encoding
β β βββ Replaces each category with number of times it appears
β β
β βββ 1.7 Target Encoding (Mean Encoding)
β β βββ Replace category with average target value
β β Example: average sales per city
β β
β βββ 1.8 Hash Encoding (Feature Hashing)
β β βββ Uses hash function to encode category into fixed-length vector
β β
β βββ 1.9 Leave-One-Out Encoding
β βββ Like target encoding but leaves out current row's target
β
βββ 2. Text Encoders (for NLP)
β β
β βββ 2.1 Bag of Words (BoW)
β β βββ Vector of word counts across document
β β
β βββ 2.2 TF-IDF (Term Frequency-Inverse Document Frequency)
β β βββ Weights words by frequency and uniqueness
β β
β βββ 2.3 Word Embeddings
β β βββ Word2Vec
β β βββ GloVe
β β βββ FastText
β β
β βββ 2.4 Sentence Embeddings
β β βββ Universal Sentence Encoder (USE)
β β βββ BERT Embeddings
β β βββ SBERT (Sentence-BERT)
β β
β βββ 2.5 Tokenizer-based Encoders
β βββ Byte Pair Encoding (BPE)
β βββ WordPiece
β βββ SentencePiece
β
βββ 3. Image Encoders (in Deep Learning)
β β
β βββ 3.1 CNN-based Encoders
β β βββ Encodes image into feature maps
β β
β βββ 3.2 Pre-trained CNN Encoders
β β βββ VGG
β β βββ ResNet
β β βββ EfficientNet
β β
β βββ 3.3 Vision Transformer (ViT) Encoders
β βββ Tokenizes and encodes image patches using attention
β
βββ 4. Sequence Encoders (for sequential/time-series data)
β β
β βββ 4.1 RNN Encoder
β βββ 4.2 LSTM Encoder
β βββ 4.3 GRU Encoder
β βββ 4.4 Transformer Encoder
β βββ Used in BERT, GPT, T5, etc.
β
βββ 5. Autoencoders (Unsupervised Feature Learning)
β
βββ 5.1 Vanilla Autoencoder
β βββ Compress and reconstruct input
β
βββ 5.2 Denoising Autoencoder
β βββ Learns to reconstruct input from noisy version
β
βββ 5.3 Sparse Autoencoder
β βββ Enforces sparsity constraint in hidden layer
β
βββ 5.4 Variational Autoencoder (VAE)
β βββ Learns probabilistic latent space
β
βββ 5.5 Contractive Autoencoder
βββ Penalizes sensitivity to input changes
ENCODING
βββ 1. CATEGORICAL ENCODING
β βββ 1.1. Nominal (No Order)
β β βββ One-Hot Encoding
β β βββ Binary Encoding
β β βββ Count/Frequency Encoding
β β βββ Hash Encoding
β β βββ Mean Encoding
β β
β βββ 1.2. Ordinal (With Order)
β βββ Label Encoding
β βββ Ordinal Integer Mapping
β βββ Target-Guided Ordinal Encoding
β
βββ 2. TEXT ENCODING (NLP)
β βββ Bag of Words (BoW)
β βββ TF-IDF (Term Frequency - Inverse Document Frequency)
β βββ Word Embeddings
β β βββ Word2Vec
β β βββ GloVe
β β βββ FastText
β βββ Transformer-based
β βββ BERT Embeddings
β βββ GPT-style Embeddings
β
βββ 3. IMAGE ENCODING (CV)
β βββ CNN Encoders
β β βββ ResNet
β β βββ VGG
β β βββ EfficientNet
β βββ Vision Transformers (ViT)
β
βββ 4. SEQUENCE ENCODING (Time-series / Speech / NLP)
β βββ RNN-based
β β βββ Simple RNN
β β βββ LSTM
β β βββ GRU
β βββ Transformer-based
β βββ Positional Encoding
β βββ Attention Mechanisms
β
βββ 5. AUTOENCODERS (Unsupervised Encoding)
β βββ Vanilla Autoencoder
β βββ Denoising Autoencoder
β βββ Variational Autoencoder (VAE)
β
βββ 6. SPECIALIZED ENCODING
βββ Embedding Layers (for DL models)
βββ Learned Embeddings (e.g., TabTransformer)
βββ Contrastive Encoders (e.g., SimCLR, BYOL)
βββ Self-Supervised Encoders (e.g., MAE, MoCo)
This course provides a comprehensive introduction to Data Science, Artificial Intelligence (AI), and Machine Learning (ML). It covers foundational concepts, practical tools, and real-world applications, with a focus on Python programming. By the end of the course, you will be equipped to build, deploy, and interpret AI models.
-
Introduction to Data Science & AI
- Overview of Data Science, AI, and ML.
- Real-world applications.
- Role of Python in Data Science & AI.
- Setting up the Python environment (Anaconda, Jupyter, VS Code).
-
Python for Data Science & AI
- Python basics: Variables, Data Types, Operators.
- Control Structures: Loops and Conditional Statements.
- Functions, Modules, and File Handling.
- Exception Handling & Best Practices.
-
Data Handling with NumPy & Pandas
- Introduction to NumPy: Arrays, Operations, Broadcasting.
- Pandas for Data Manipulation: Series, DataFrames.
- Data Cleaning: Handling missing values, duplicates.
- Data Transformation: Merging, Grouping, Pivoting.
-
Data Visualization
- Matplotlib for Basic Plots (Line, Bar, Scatter, Pie).
- Seaborn for Statistical Data Visualization.
- Interactive Visualization with Plotly.
-
Exploratory Data Analysis (EDA)
- Understanding Data Distributions.
- Outlier Detection & Handling.
- Feature Engineering & Scaling Techniques.
- Correlation Analysis & Insights Extraction.
-
Introduction to Machine Learning
- Supervised vs Unsupervised Learning.
- ML Workflow: Problem Statement, Data Processing, Model Building.
- Bias-Variance Tradeoff & Performance Metrics.
- Overview of ML Libraries (Scikit-Learn, TensorFlow, PyTorch).
-
Regression Analysis
- Linear Regression: Model, Assumptions, Implementation.
- Multiple Linear Regression & Polynomial Regression.
- Regularization Techniques: Ridge & Lasso.
- Evaluating Regression Models.
-
Classification Techniques
- Logistic Regression & Decision Boundaries.
- k-Nearest Neighbors (k-NN) Algorithm.
- Decision Trees & Random Forests.
- Performance Metrics: Accuracy, Precision, Recall, AUC-ROC.
-
Feature Engineering & Selection
- Handling Categorical Variables: Encoding Techniques.
- Feature Scaling: Normalization & Standardization.
- Feature Selection: PCA, LDA, Feature Importance.
- Handling Imbalanced Data.
-
Ensemble Learning & Model Stacking
- Bagging: Random Forest.
- Boosting: AdaBoost, Gradient Boosting, XGBoost.
- Stacking & Blending Techniques.
- Hyperparameter Tuning with GridSearchCV & RandomizedSearchCV.
-
Unsupervised Learning
- Clustering: k-Means, Hierarchical, DBSCAN.
- Dimensionality Reduction: PCA, t-SNE, Autoencoders.
-
Natural Language Processing (NLP)
- Text Processing: Tokenization, Lemmatization, Stemming.
- Bag-of-Words & TF-IDF.
- Sentiment Analysis & Text Classification.
- Advanced NLP: Transformers, BERT, GPT.
-
Deep Learning
- Neural Networks Fundamentals.
- Convolutional Neural Networks (CNNs) for Image Processing.
- Recurrent Neural Networks (RNNs) & LSTMs for Time-Series Data.
- Generative AI & GANs.
-
Model Deployment & MLOps
- Saving & Loading Models.
- Deployment with Flask & FastAPI.
- CI/CD Pipelines for ML Models.
- Monitoring & Maintaining ML Models.
-
Advanced Topics
- Time Series Analysis & Forecasting.
- Reinforcement Learning (RL) Basics.
- AI for Business Decision-Making.
- Edge AI & IoT Applications.
-
Ethics & Compliance
- Explainable AI: SHAP & LIME.
- Ethical AI & Bias in Machine Learning.
- GDPR, HIPAA, and AI Compliance.
-
Capstone Project
- Hands-on Real-world Project.
- Model Deployment & Performance Evaluation.
- Presentation & Peer Review.
- Certification & Career Guidance.
- Python Libraries: NumPy, Pandas, Matplotlib, Seaborn, Scikit-Learn, TensorFlow, PyTorch.
- NLP Libraries: NLTK, SpaCy, Hugging Face Transformers.
- Deployment Tools: Flask, FastAPI, Docker.
- Cloud Platforms: AWS, Azure, Google Cloud.
- Basic programming knowledge (preferably Python).
- Familiarity with high school-level mathematics (linear algebra, probability).
By the end of this course, you will:
- Understand the fundamentals of Data Science, AI, and ML.
- Be proficient in Python for data analysis and machine learning.
- Build, evaluate, and deploy machine learning models.
- Gain hands-on experience with real-world projects.
- Be prepared for a career in Data Science & AI.
Upon successful completion of the course and capstone project, you will receive a certificate of completion.
For inquiries, please contact [Your Name] at [Your Email].
This course material is licensed under the MIT License.