Skip to content

🧠A hands-on workspace for practicing machine learning concepts, data preprocessing, and experimenting with small ML projects. This repo includes foundational Python scripts, real-world mini-projects, and experiments that reflect a progressive learning journey in applied machine learning.

Notifications You must be signed in to change notification settings

souravlouha/ML_Practice_Studio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

vjhgh

All_ML_session

web-banner-AIML-1

🌳 AI, ML, and Neural Networks – Detailed Family Tree


Artificial Intelligence (AI)
β”‚
β”œβ”€β”€ Machine Learning (ML)
β”‚   β”‚
β”‚   β”œβ”€β”€ Supervised Learning
β”‚   β”‚   β”œβ”€β”€ Regression
β”‚   β”‚   β”‚   β”œβ”€β”€ Linear Regression
β”‚   β”‚   β”‚   β”œβ”€β”€ Polynomial Regression
β”‚   β”‚   β”‚   └── Ridge/Lasso Regression
β”‚   β”‚   └── Classification
β”‚   β”‚       β”œβ”€β”€ Logistic Regression
β”‚   β”‚       β”œβ”€β”€ Decision Tree Classifier
β”‚   β”‚       β”œβ”€β”€ Random Forest
β”‚   β”‚       β”œβ”€β”€ K-Nearest Neighbors (KNN)
β”‚   β”‚       β”œβ”€β”€ Support Vector Machine (SVM)
β”‚   β”‚       └── Naive Bayes
β”‚   β”‚
β”‚   β”œβ”€β”€ Unsupervised Learning
β”‚   β”‚   β”œβ”€β”€ Clustering
β”‚   β”‚   β”‚   β”œβ”€β”€ K-Means Clustering
β”‚   β”‚   β”‚   β”œβ”€β”€ DBSCAN
β”‚   β”‚   β”‚   └── Hierarchical Clustering
β”‚   β”‚   β”œβ”€β”€ Dimensionality Reduction
β”‚   β”‚   β”‚   β”œβ”€β”€ PCA (Principal Component Analysis)
β”‚   β”‚   β”‚   β”œβ”€β”€ t-SNE
β”‚   β”‚   β”‚   └── Autoencoders (Neural Net based)
β”‚   β”‚   └── Association Rule Learning
β”‚   β”‚       β”œβ”€β”€ Apriori
β”‚   β”‚       └── Eclat
β”‚   β”‚
β”‚   └── Reinforcement Learning
β”‚   |   β”œβ”€β”€ Model-Free Methods
β”‚   |   β”‚   β”œβ”€β”€ Q-Learning
β”‚   |   β”‚   └── SARSA
β”‚   |   └── Deep Reinforcement Learning
β”‚   |       β”œβ”€β”€ Deep Q-Network (DQN)
β”‚   |       β”œβ”€β”€ Proximal Policy Optimization (PPO)
β”‚   |       └── A3C (Asynchronous Advantage Actor-Critic)
β”‚   |
|   |
|   β”œβ”€β”€ Federated Learning
β”‚   β”‚   └── ML on decentralized data (e.g., smartphones)
β”‚   β”‚
β”‚   β”œβ”€β”€ Transfer Learning
β”‚   β”‚   └── Uses a pre-trained model on new tasks
β”‚   β”‚       └── e.g., ResNet, BERT, GPT fine-tuning
β”‚   β”‚
β”‚   └── Meta Learning
β”‚       └── "Learning to learn" (e.g., few-shot learning)
|
|
|
└── Neural Networks (Subset of ML)
    β”‚
    β”œβ”€β”€ Shallow Neural Networks
    β”‚   └── Single Hidden Layer Perceptron
    β”‚
    └── Deep Learning (Deep Neural Networks)
        β”‚
        β”œβ”€β”€ Feedforward Neural Network (FNN)
        β”‚   └── Also called MLP (Multilayer Perceptron)
        β”‚
        β”œβ”€β”€ Convolutional Neural Network (CNN)
        β”‚   β”œβ”€β”€ Image Classification
        β”‚   β”œβ”€β”€ Object Detection
        β”‚   └── Image Segmentation
        β”‚
        β”œβ”€β”€ Recurrent Neural Network (RNN)
        β”‚   β”œβ”€β”€ LSTM (Long Short-Term Memory)
        β”‚   β”œβ”€β”€ GRU (Gated Recurrent Unit)
        β”‚   └── Applications: time series, speech, NLP
        β”‚
        β”œβ”€β”€ Transformer Networks
        β”‚   β”œβ”€β”€ BERT
        β”‚   β”œβ”€β”€ GPT (like ChatGPT)
        β”‚   └── Used in: NLP, translation, summarization
        β”‚
        β”œβ”€β”€ Autoencoders
        β”‚   β”œβ”€β”€ Denoising Autoencoder
        β”‚   └── Variational Autoencoder (VAE)
        β”‚
        └── Generative Adversarial Networks (GANs)
            β”œβ”€β”€ Generator
            └── Discriminator


πŸ”„ Encoders in Machine Learning

Encoders
β”‚
β”œβ”€β”€ 1. Categorical Encoders
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.1 Label Encoding
β”‚   β”‚   └── Assigns a unique integer to each category
β”‚   β”‚       Example: red=0, green=1, blue=2
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.2 One-Hot Encoding
β”‚   β”‚   └── Creates binary columns for each category
β”‚   β”‚       Example: red = [1, 0, 0], green = [0, 1, 0]
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.3 Ordinal Encoding
β”‚   β”‚   └── Assigns ordered integers based on rank/priority
β”‚   β”‚       Example: small=1, medium=2, large=3
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.4 Binary Encoding
β”‚   β”‚   └── Converts categories to binary code
β”‚   β”‚       More compact than One-Hot for high-cardinality data
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.5 Frequency Encoding
β”‚   β”‚   └── Replaces category with frequency count
β”‚   β”‚       Example: red=30, green=20 (based on occurrence)
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.6 Count Encoding
β”‚   β”‚   └── Replaces each category with number of times it appears
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.7 Target Encoding (Mean Encoding)
β”‚   β”‚   └── Replace category with average target value
β”‚   β”‚       Example: average sales per city
β”‚   β”‚
β”‚   β”œβ”€β”€ 1.8 Hash Encoding (Feature Hashing)
β”‚   β”‚   └── Uses hash function to encode category into fixed-length vector
β”‚   β”‚
β”‚   └── 1.9 Leave-One-Out Encoding
β”‚       └── Like target encoding but leaves out current row's target
β”‚
β”œβ”€β”€ 2. Text Encoders (for NLP)
β”‚   β”‚
β”‚   β”œβ”€β”€ 2.1 Bag of Words (BoW)
β”‚   β”‚   └── Vector of word counts across document
β”‚   β”‚
β”‚   β”œβ”€β”€ 2.2 TF-IDF (Term Frequency-Inverse Document Frequency)
β”‚   β”‚   └── Weights words by frequency and uniqueness
β”‚   β”‚
β”‚   β”œβ”€β”€ 2.3 Word Embeddings
β”‚   β”‚   β”œβ”€β”€ Word2Vec
β”‚   β”‚   β”œβ”€β”€ GloVe
β”‚   β”‚   └── FastText
β”‚   β”‚
β”‚   β”œβ”€β”€ 2.4 Sentence Embeddings
β”‚   β”‚   β”œβ”€β”€ Universal Sentence Encoder (USE)
β”‚   β”‚   β”œβ”€β”€ BERT Embeddings
β”‚   β”‚   └── SBERT (Sentence-BERT)
β”‚   β”‚
β”‚   └── 2.5 Tokenizer-based Encoders
β”‚       β”œβ”€β”€ Byte Pair Encoding (BPE)
β”‚       β”œβ”€β”€ WordPiece
β”‚       └── SentencePiece
β”‚
β”œβ”€β”€ 3. Image Encoders (in Deep Learning)
β”‚   β”‚
β”‚   β”œβ”€β”€ 3.1 CNN-based Encoders
β”‚   β”‚   └── Encodes image into feature maps
β”‚   β”‚
β”‚   β”œβ”€β”€ 3.2 Pre-trained CNN Encoders
β”‚   β”‚   β”œβ”€β”€ VGG
β”‚   β”‚   β”œβ”€β”€ ResNet
β”‚   β”‚   └── EfficientNet
β”‚   β”‚
β”‚   └── 3.3 Vision Transformer (ViT) Encoders
β”‚       └── Tokenizes and encodes image patches using attention
β”‚
β”œβ”€β”€ 4. Sequence Encoders (for sequential/time-series data)
β”‚   β”‚
β”‚   β”œβ”€β”€ 4.1 RNN Encoder
β”‚   β”œβ”€β”€ 4.2 LSTM Encoder
β”‚   β”œβ”€β”€ 4.3 GRU Encoder
β”‚   └── 4.4 Transformer Encoder
β”‚       └── Used in BERT, GPT, T5, etc.
β”‚
└── 5. Autoencoders (Unsupervised Feature Learning)
    β”‚
    β”œβ”€β”€ 5.1 Vanilla Autoencoder
    β”‚   └── Compress and reconstruct input
    β”‚
    β”œβ”€β”€ 5.2 Denoising Autoencoder
    β”‚   └── Learns to reconstruct input from noisy version
    β”‚
    β”œβ”€β”€ 5.3 Sparse Autoencoder
    β”‚   └── Enforces sparsity constraint in hidden layer
    β”‚
    β”œβ”€β”€ 5.4 Variational Autoencoder (VAE)
    β”‚   └── Learns probabilistic latent space
    β”‚
    └── 5.5 Contractive Autoencoder
        └── Penalizes sensitivity to input changes


🧠 ENCODERS in Machine Learning & Deep Learning

ENCODING
β”œβ”€β”€ 1. CATEGORICAL ENCODING
β”‚   β”œβ”€β”€ 1.1. Nominal (No Order)
β”‚   β”‚   β”œβ”€β”€ One-Hot Encoding
β”‚   β”‚   β”œβ”€β”€ Binary Encoding
β”‚   β”‚   β”œβ”€β”€ Count/Frequency Encoding
β”‚   β”‚   β”œβ”€β”€ Hash Encoding
β”‚   β”‚   └── Mean Encoding
β”‚   β”‚
β”‚   └── 1.2. Ordinal (With Order)
β”‚       β”œβ”€β”€ Label Encoding
β”‚       β”œβ”€β”€ Ordinal Integer Mapping
β”‚       └── Target-Guided Ordinal Encoding
β”‚
β”œβ”€β”€ 2. TEXT ENCODING (NLP)
β”‚   β”œβ”€β”€ Bag of Words (BoW)
β”‚   β”œβ”€β”€ TF-IDF (Term Frequency - Inverse Document Frequency)
β”‚   β”œβ”€β”€ Word Embeddings
β”‚   β”‚   β”œβ”€β”€ Word2Vec
β”‚   β”‚   β”œβ”€β”€ GloVe
β”‚   β”‚   └── FastText
β”‚   └── Transformer-based
β”‚       β”œβ”€β”€ BERT Embeddings
β”‚       └── GPT-style Embeddings
β”‚
β”œβ”€β”€ 3. IMAGE ENCODING (CV)
β”‚   β”œβ”€β”€ CNN Encoders
β”‚   β”‚   β”œβ”€β”€ ResNet
β”‚   β”‚   β”œβ”€β”€ VGG
β”‚   β”‚   └── EfficientNet
β”‚   └── Vision Transformers (ViT)
β”‚
β”œβ”€β”€ 4. SEQUENCE ENCODING (Time-series / Speech / NLP)
β”‚   β”œβ”€β”€ RNN-based
β”‚   β”‚   β”œβ”€β”€ Simple RNN
β”‚   β”‚   β”œβ”€β”€ LSTM
β”‚   β”‚   └── GRU
β”‚   └── Transformer-based
β”‚       β”œβ”€β”€ Positional Encoding
β”‚       └── Attention Mechanisms
β”‚
β”œβ”€β”€ 5. AUTOENCODERS (Unsupervised Encoding)
β”‚   β”œβ”€β”€ Vanilla Autoencoder
β”‚   β”œβ”€β”€ Denoising Autoencoder
β”‚   └── Variational Autoencoder (VAE)
β”‚
└── 6. SPECIALIZED ENCODING
    β”œβ”€β”€ Embedding Layers (for DL models)
    β”œβ”€β”€ Learned Embeddings (e.g., TabTransformer)
    β”œβ”€β”€ Contrastive Encoders (e.g., SimCLR, BYOL)
    └── Self-Supervised Encoders (e.g., MAE, MoCo)


Introduction to Data Science & AI

Overview

This course provides a comprehensive introduction to Data Science, Artificial Intelligence (AI), and Machine Learning (ML). It covers foundational concepts, practical tools, and real-world applications, with a focus on Python programming. By the end of the course, you will be equipped to build, deploy, and interpret AI models.


Course Structure

  1. Introduction to Data Science & AI

    • Overview of Data Science, AI, and ML.
    • Real-world applications.
    • Role of Python in Data Science & AI.
    • Setting up the Python environment (Anaconda, Jupyter, VS Code).
  2. Python for Data Science & AI

    • Python basics: Variables, Data Types, Operators.
    • Control Structures: Loops and Conditional Statements.
    • Functions, Modules, and File Handling.
    • Exception Handling & Best Practices.
  3. Data Handling with NumPy & Pandas

    • Introduction to NumPy: Arrays, Operations, Broadcasting.
    • Pandas for Data Manipulation: Series, DataFrames.
    • Data Cleaning: Handling missing values, duplicates.
    • Data Transformation: Merging, Grouping, Pivoting.
  4. Data Visualization

    • Matplotlib for Basic Plots (Line, Bar, Scatter, Pie).
    • Seaborn for Statistical Data Visualization.
    • Interactive Visualization with Plotly.
  5. Exploratory Data Analysis (EDA)

    • Understanding Data Distributions.
    • Outlier Detection & Handling.
    • Feature Engineering & Scaling Techniques.
    • Correlation Analysis & Insights Extraction.
  6. Introduction to Machine Learning

    • Supervised vs Unsupervised Learning.
    • ML Workflow: Problem Statement, Data Processing, Model Building.
    • Bias-Variance Tradeoff & Performance Metrics.
    • Overview of ML Libraries (Scikit-Learn, TensorFlow, PyTorch).
  7. Regression Analysis

    • Linear Regression: Model, Assumptions, Implementation.
    • Multiple Linear Regression & Polynomial Regression.
    • Regularization Techniques: Ridge & Lasso.
    • Evaluating Regression Models.
  8. Classification Techniques

    • Logistic Regression & Decision Boundaries.
    • k-Nearest Neighbors (k-NN) Algorithm.
    • Decision Trees & Random Forests.
    • Performance Metrics: Accuracy, Precision, Recall, AUC-ROC.
  9. Feature Engineering & Selection

    • Handling Categorical Variables: Encoding Techniques.
    • Feature Scaling: Normalization & Standardization.
    • Feature Selection: PCA, LDA, Feature Importance.
    • Handling Imbalanced Data.
  10. Ensemble Learning & Model Stacking

    • Bagging: Random Forest.
    • Boosting: AdaBoost, Gradient Boosting, XGBoost.
    • Stacking & Blending Techniques.
    • Hyperparameter Tuning with GridSearchCV & RandomizedSearchCV.
  11. Unsupervised Learning

    • Clustering: k-Means, Hierarchical, DBSCAN.
    • Dimensionality Reduction: PCA, t-SNE, Autoencoders.
  12. Natural Language Processing (NLP)

    • Text Processing: Tokenization, Lemmatization, Stemming.
    • Bag-of-Words & TF-IDF.
    • Sentiment Analysis & Text Classification.
    • Advanced NLP: Transformers, BERT, GPT.
  13. Deep Learning

    • Neural Networks Fundamentals.
    • Convolutional Neural Networks (CNNs) for Image Processing.
    • Recurrent Neural Networks (RNNs) & LSTMs for Time-Series Data.
    • Generative AI & GANs.
  14. Model Deployment & MLOps

    • Saving & Loading Models.
    • Deployment with Flask & FastAPI.
    • CI/CD Pipelines for ML Models.
    • Monitoring & Maintaining ML Models.
  15. Advanced Topics

    • Time Series Analysis & Forecasting.
    • Reinforcement Learning (RL) Basics.
    • AI for Business Decision-Making.
    • Edge AI & IoT Applications.
  16. Ethics & Compliance

    • Explainable AI: SHAP & LIME.
    • Ethical AI & Bias in Machine Learning.
    • GDPR, HIPAA, and AI Compliance.
  17. Capstone Project

    • Hands-on Real-world Project.
    • Model Deployment & Performance Evaluation.
    • Presentation & Peer Review.
    • Certification & Career Guidance.

Tools & Libraries

  • Python Libraries: NumPy, Pandas, Matplotlib, Seaborn, Scikit-Learn, TensorFlow, PyTorch.
  • NLP Libraries: NLTK, SpaCy, Hugging Face Transformers.
  • Deployment Tools: Flask, FastAPI, Docker.
  • Cloud Platforms: AWS, Azure, Google Cloud.

Prerequisites

  • Basic programming knowledge (preferably Python).
  • Familiarity with high school-level mathematics (linear algebra, probability).

Learning Outcomes

By the end of this course, you will:

  • Understand the fundamentals of Data Science, AI, and ML.
  • Be proficient in Python for data analysis and machine learning.
  • Build, evaluate, and deploy machine learning models.
  • Gain hands-on experience with real-world projects.
  • Be prepared for a career in Data Science & AI.

Certification

Upon successful completion of the course and capstone project, you will receive a certificate of completion.


Contact

For inquiries, please contact [Your Name] at [Your Email].


License

This course material is licensed under the MIT License.

About

🧠A hands-on workspace for practicing machine learning concepts, data preprocessing, and experimenting with small ML projects. This repo includes foundational Python scripts, real-world mini-projects, and experiments that reflect a progressive learning journey in applied machine learning.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published