About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Perform the symmetric rank 1 operation
A = α*x*x^T + A.
npm install @stdlib/blas-base-ssprAlternatively,
- To load the package in a website via a
scripttag without installation and bundlers, use the ES Module available on theesmbranch (see README). - If you are using Deno, visit the
denobranch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umdbranch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var sspr = require( '@stdlib/blas-base-sspr' );Performs the symmetric rank 1 operation A = α*x*x^T + A where α is a scalar, x is an N element vector, and A is an N by N symmetric matrix supplied in packed form.
var Float32Array = require( '@stdlib/array-float32' );
var AP = new Float32Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
sspr( 'row-major', 'upper', 3, 1.0, x, 1, AP );
// AP => <Float32Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]The function has the following parameters:
- order: storage layout.
- uplo: specifies whether the upper or lower triangular part of the symmetric matrix
Ais supplied. - N: number of elements along each dimension of
A. - α: scalar constant.
- x: input
Float32Array. - sx: index increment for
x. - AP: packed form of a symmetric matrix
Astored as aFloat32Array.
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of x in reverse order,
var Float32Array = require( '@stdlib/array-float32' );
var AP = new Float32Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
var x = new Float32Array( [ 3.0, 2.0, 1.0 ] );
sspr( 'row-major', 'upper', 3, 1.0, x, -1, AP );
// AP => <Float32Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float32Array = require( '@stdlib/array-float32' );
// Initial arrays...
var x0 = new Float32Array( [ 0.0, 3.0, 2.0, 1.0 ] );
var AP = new Float32Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
sspr( 'row-major', 'upper', 3, 1.0, x1, -1, AP );
// AP => <Float32Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]Performs the symmetric rank 1 operation A = α*x*x^T + A, using alternative indexing semantics and where α is a scalar, x is an N element vector, and A is an N by N symmetric matrix supplied in packed form.
var Float32Array = require( '@stdlib/array-float32' );
var AP = new Float32Array( [ 1.0, 1.0, 2.0, 1.0, 2.0, 3.0 ] );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
sspr.ndarray( 'row-major', 'lower', 3, 1.0, x, 1, 0, AP, 1, 0 );
// AP => <Float32Array>[ 2.0, 3.0, 6.0, 4.0, 8.0, 12.0 ]The function has the following additional parameters:
- ox: starting index for
x. - sap:
APstride length. - oap: starting index for
AP.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float32Array = require( '@stdlib/array-float32' );
var AP = new Float32Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] );
var x = new Float32Array( [ 3.0, 2.0, 1.0 ] );
sspr.ndarray( 'row-major', 'upper', 3, 1.0, x, -1, 2, AP, 1, 0 );
// AP => <Float32Array>[ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ]var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var sspr = require( '@stdlib/blas-base-sspr' );
var opts = {
'dtype': 'float32'
};
var N = 5;
var AP = discreteUniform( N * ( N + 1 ) / 2, -10.0, 10.0, opts );
var x = discreteUniform( N, -10.0, 10.0, opts );
sspr( 'column-major', 'upper', N, 1.0, x, 1, AP );
console.log( AP );
sspr.ndarray( 'column-major', 'upper', N, 1.0, x, 1, 0, AP, 1, 0 );
console.log( AP );#include "stdlib/blas/base/sspr.h"Performs the symmetric rank 1 operation A = α*x*x^T + A where α is a scalar, x is an N element vector, and A is an N by N symmetric matrix supplied in packed form.
#include "stdlib/blas/base/shared.h"
float AP[] = { 1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 1.0f };
const float x[] = { 1.0f, 2.0f, 3.0f };
c_sspr( CblasColMajor, CblasUpper, 3, 1.0f, x, 1, AP );The function accepts the following arguments:
- order:
[in] CBLAS_LAYOUTstorage layout. - uplo:
[in] CBLAS_UPLOspecifies whether the upper or lower triangular part of the symmetric matrixAshould be referenced. - N:
[in] CBLAS_INTnumber of elements along each dimension ofA. - alpha:
[in] floatscalar. - X:
[in] float*input vector. - strideX:
[in] CBLAS_INTstride length forX. - AP:
[inout] float*packed form of a symmetric matrixA.
void c_sspr( const CBLAS_LAYOUT order, const CBLAS_UPLO uplo, const CBLAS_INT N, const float alpha, const float *X, const CBLAS_INT strideX, float *AP )Performs the symmetric rank 1 operation A = α*x*x^T + A where α is a scalar, x is an N element vector, and A is an N by N symmetric matrix supplied in packed form using alternative indexing semantics.
#include "stdlib/blas/base/shared.h"
float AP[] = { 1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 1.0f };
const float x[] = { 1.0f, 2.0f, 3.0f };
c_sspr_ndarray( CblasColMajor, CblasUpper, 3, 1.0f, x, 1, AP, 1, 0 );The function accepts the following arguments:
- order:
[in] CBLAS_LAYOUTstorage layout. - uplo:
[in] CBLAS_UPLOspecifies whether the upper or lower triangular part of the symmetric matrixAshould be referenced. - N:
[in] CBLAS_INTnumber of elements along each dimension ofA. - alpha:
[in] floatscalar. - X:
[in] float*input vector. - strideX:
[in] CBLAS_INTstride length forX. - offsetX:
[in] CBLAS_INTstarting index forX. - AP:
[inout] float*packed form of a symmetric matrixA. - strideAP:
[in] CBLAS_INTstride length forAP. - offsetAP:
[in] CBLAS_INTstarting index forAP.
void c_sspr_ndarray( const CBLAS_LAYOUT order, const CBLAS_UPLO uplo, const CBLAS_INT N, const float alpha, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, float *AP, const CBLAS_INT strideAP, const CBLAS_INT offsetAP )#include "stdlib/blas/base/sspr.h"
#include "stdlib/blas/base/shared.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
float AP[] = { 1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 1.0f };
const float x[] = { 1.0f, 2.0f, 3.0f };
// Specify the number of elements along each dimension of `A`:
const int N = 3;
// Perform the symmetric rank 1 operation `A = α*x*x^T + A`:
c_sspr( CblasRowMajor, CblasUpper, N, 1.0f, x, 1, AP );
// Print the result:
for ( int i = 0; i < N*(N+1)/2; i++ ) {
printf( "AP[ %i ] = %f\n", i, AP[ i ] );
}
// Perform the symmetric rank 1 operation `A = α*x*x^T + A` using alternative indexing semantics:
c_sspr_ndarray( CblasRowMajor, CblasUpper, N, 1.0f, x, 1, 0, AP, 1, 0 );
// Print the result:
for ( int i = 0; i < N*(N+1)/2; i++ ) {
printf( "AP[ %i ] = %f\n", i, AP[ i ] );
}
}This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.