Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -947,8 +947,16 @@ def on_save_clicked(self):
if not os.path.exists(evaluation_folder):
os.mkdir(evaluation_folder)

database_dict = {}
database_dict["camera_name"] = self.data_source.get_camera_name()
database_dict["training_folder"] = training_folder
database_dict["evaluation_folder"] = evaluation_folder
database_dict["training_samples"] = []
database_dict["evaluation_samples"] = []

for index, image in enumerate(self.data_collector.get_training_images()):
cv2.imwrite(os.path.join(training_folder, f"{index:04d}.jpg"), image) # noqa E231
img_name = f"{index:04d}.jpg"
cv2.imwrite(os.path.join(training_folder, img_name), image) # noqa E231
np.savetxt(
os.path.join(training_folder, f"{index:04d}_training_img_points.txt"),
self.data_collector.get_training_detection(index).get_flattened_image_points(),
Expand All @@ -958,8 +966,19 @@ def on_save_clicked(self):
self.data_collector.get_training_detection(index).get_flattened_object_points(),
)

sample = {}
sample["image_name"] = img_name
sample["img_points"] = self.data_collector.get_training_detection(
index
).get_flattened_image_points()
sample["obj_points"] = self.data_collector.get_training_detection(
index
).get_flattened_object_points()
database_dict["training_samples"].append(sample)

for index, image in enumerate(self.data_collector.get_evaluation_images()):
cv2.imwrite(os.path.join(evaluation_folder, f"{index:04d}.jpg"), image) # noqa E231
img_name = f"{index:04d}.jpg"
cv2.imwrite(os.path.join(evaluation_folder, img_name), image) # noqa E231
np.savetxt(
os.path.join(evaluation_folder, f"{index:04d}_eval_img_points.txt"),
self.data_collector.get_evaluation_detection(index).get_flattened_image_points(),
Expand All @@ -969,6 +988,25 @@ def on_save_clicked(self):
self.data_collector.get_evaluation_detection(index).get_flattened_object_points(),
)

sample = {}
sample["image_name"] = img_name
sample["img_points"] = self.data_collector.get_evaluation_detection(
index
).get_flattened_image_points()
sample["obj_points"] = self.data_collector.get_evaluation_detection(
index
).get_flattened_object_points()
database_dict["evaluation_samples"].append(sample)

try:
import pickle

with open(os.path.join(output_folder, "database.pkl"), "wb") as f:
pickle.dump(database_dict, f)

except Exception:
logging.warning("Pickle not available, skipping pickle output")

def process_detection_results(self, img: np.array, detection: BoardDetection, img_stamp: float):
"""Process the results from an object detection."""
# Signal that the detector is free
Expand Down