UltraRAG 2.0: Less Code, Lower Barrier, Faster Deployment! MCP-based low-code RAG framework, enabling researchers to build complex pipelines to creative innovation.
-
Updated
Sep 28, 2025 - Python
UltraRAG 2.0: Less Code, Lower Barrier, Faster Deployment! MCP-based low-code RAG framework, enabling researchers to build complex pipelines to creative innovation.
A demonstration of hybrid search with reranking using Qdrant and BGE-M3 model. A showcase of dense and sparse retrieval combined with ColBERT reranking for optimal search results
LLM API Server , OpenAI 同时支持 ChatGLM3 ,Llama, Llama-3, Firefunction, Openfunctions ,BAAI/bge-m3 ,bge-large-zh-v1.5
ONNX implementation of the BGE-M3 multilingual embedding model and tokenizer with native C#, Java, and Python implementations. Generates all three embedding types: dense, sparse, and ColBERT vectors.
Train a pooling Head for Dense Embeddings
Herramientas para procesar datos de desaparecidos: anonimización de narrativas con IA. Búsqueda semántica de casos similares mediante embeddings de texto (BGE-M3).
Telegram chatbot FAQ untuk membantu mahasiswa Universitas Lampung mengakses informasi Siakadu menggunakan semantic search (BGE-M3 + FAISS).
Dự án MVP “Interior Design Agent” – trợ lý AI tư vấn thiết kế phòng làm việc dựa trên Mastra (Agent + RAG), LLM gpt-oss, embedding bge-m3 và vector store Chroma.
Add a description, image, and links to the bge-m3 topic page so that developers can more easily learn about it.
To associate your repository with the bge-m3 topic, visit your repo's landing page and select "manage topics."