You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This repository contains code for evaluating different machine learning models for classifying fake news. The dataset used for this evaluation consists of labeled news articles as either "REAL" or "FAKE". Three popular classifiers, Support Vector Machine (SVM), Decision Tree, and Logistic Regression, are trained and evaluated on this dataset.
Machine learning for credit card default. Precision-recalls are calculated due to imbalanced data. Confusion matrices and test statistics are compared with each other based on Logit over and under-sampling methods, decision tree, SVM, ensemble learning using Random Forest, Ada Boost and Gradient Boosting. Easy Ensemble AdaBoost classifier appear…