The official python package for NimbleBox. Exposes all APIs as CLIs and contains modules to make ML 🌸
-
Updated
Oct 2, 2023 - Python
The official python package for NimbleBox. Exposes all APIs as CLIs and contains modules to make ML 🌸
A machine learning project to predict water potability based on quality parameters, featuring an end-to-end MLOps pipeline, a web interface, and scalable deployment with monitoring and CI/CD support.
Developed an image classification web app using CNN to differentiate cats and dogs. Achieved high accuracy, precision, recall, and F1 score. Pipeline involves data preprocessing, model training, Docker deployment on AWS ECS, user-friendly interface, and reliable CI/CD. Showcases deep learning's potential in image analysis.
End-to-end MLOps pipeline for hotel booking demand forecasting. Includes modular components for data ingestion, model training, evaluation, versioning, and deployment. Features configuration-based execution, CI/CD with GitHub Actions, and automated logging and testing.
A complete production-ready MLOps framework with built-in distributed training, monitoring, and CI/CD. Deploy ML models to production with confidence using our battle-tested infrastructure.
A modular ML pipeline built with Python, scikit-learn, and Docker, featuring YAML-based config management, DVC tracking, CI/CD integration via GitHub Actions, and production-ready FastAPI deployment. Designed for reproducibility, scalability, and monitoring readiness (Prometheus/Grafana).
Add a description, image, and links to the mlops-pipeline topic page so that developers can more easily learn about it.
To associate your repository with the mlops-pipeline topic, visit your repo's landing page and select "manage topics."