@@ -481,6 +481,7 @@ def check_relatedness_vector(
481481 verbosity = verbosity ,
482482 centre = centre ,
483483 nodes = nodes ,
484+ span_normalise = span_normalise ,
484485 )
485486 return R
486487
@@ -815,21 +816,21 @@ def pca(ts, windows, centre, samples=None, individuals=None, time_windows=None):
815816 if drop_dimension :
816817 windows = [0 , ts .sequence_length ]
817818 if time_windows is None :
818- Sigma = relatedness_matrix (ts = ts , windows = windows , centre = False )[:, ii , :][
819- :, :, ii
820- ]
819+ Sigma = relatedness_matrix (
820+ ts = ts , windows = windows , centre = False , span_normalise = False
821+ )[:, ii , :][:, :, ii ]
821822 else :
822823 assert time_windows [0 ] < time_windows [1 ]
823824 ts_low , ts_high = (
824825 ts .decapitate (time_windows [0 ]),
825826 ts .decapitate (time_windows [1 ]),
826827 )
827- Sigma_low = relatedness_matrix (ts = ts_low , windows = windows , centre = False )[
828- :, ii , :
829- ][:, :, ii ]
830- Sigma_high = relatedness_matrix (ts = ts_high , windows = windows , centre = False )[
831- :, ii , :
832- ][:, :, ii ]
828+ Sigma_low = relatedness_matrix (
829+ ts = ts_low , windows = windows , centre = False , span_normalise = False
830+ )[:, ii , : ][:, :, ii ]
831+ Sigma_high = relatedness_matrix (
832+ ts = ts_high , windows = windows , centre = False , span_normalise = False
833+ )[:, ii , : ][:, :, ii ]
833834 Sigma = Sigma_high - Sigma_low
834835 if individuals is not None :
835836 ni = len (individuals )
0 commit comments