Skip to content

Official codebase for the SIGMOD/PODS 2026 paper "IDAP++: Advancing Divergence-Aware Pruning with Joint Filter and Layer Optimization"

License

Notifications You must be signed in to change notification settings

user852154/divergence_aware_pruning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IDAP++: Advancing Divergence-Aware Pruning with Joint Filter and Layer Optimization

Codebase for ACM SIGMOD/PODS 2026 Submission

This repository provides the official implementation of IDAP++, a novel neural network compression approach that unifies both filter-level (width) and architecture-level (depth) pruning through information flow divergence analysis. The proposed method establishes a unified approach applicable to diverse neural architectures, including convolutional networks and transformer-based models.

We propose the first pruning methodology that systematically optimizes neural networks along both width (filter-level) and depth (layer-level) dimensions through a unified flow-divergence criterion. The framework combines:

  • Divergence-Aware Filter Pruning (IDAP)
  • Flow-Guided Layer Truncation

Prerequisites

  • Python 3.10+
  • PyTorch 2.0+
  • CUDA-compatible GPU
  • Other dependencies listed in requirements.txt

Installation

  1. Clone the repository:
git clone https://github.com/user852154/divergence_aware_pruning.git
cd divergence_aware_pruning
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate
  1. Install dependencies:
pip install -r requirements.txt

Visualization of information flow through network depth

Concept Illustration

Results

  1. Pruning Results for Different Architectures Using IDAP++: Base vs. Pruned Models (Acc@1, GFlops, Δ%)

The table below presents the outcomes of our experiments, offering a comparative analysis of pruning across various model architectures and datasets. It reports top-1 accuracy (Acc@1) for both the original and pruned models, along with their computational cost measured in GFlops. The Δ% columns indicate the relative changes in accuracy and computational complexity resulting from pruning.

Architecture Dataset Acc@1 Base Acc@1 Pruned Δ% GFlops Base GFlops Pruned Δ%
ResNet-50 ImageNet 76,13 74,62 −1,99 4,1 1,5 −63
CIFAR-100 86,61 84,18 −2,80 4,1 1,2 −71
CIFAR-10 98,20 95,98 −2,26 4,1 1,1 −72
Stanford Cars 92,52 90,14 −2,57 4,1 1,2 −70
Flowers-102 97,91 96,75 −1,19 4,1 1,5 −64
iNaturalist 76,14 74,49 −2,17 4,1 1,4 −65
Food101 90,45 88,58 −2,07 4,1 1,3 −67
Oxford-IIIT Pet 93,12 92,19 −1,00 4,1 1,4 −65
Fashion MNIST 93,18 91,79 −1,49 4,1 0,8 −80
FER2013 71,80 69,52 −3,18 4,1 1,3 −67
EfficientNet-B4 ImageNet 83,38 81,85 −1,84 4,2 1,5 −65
CIFAR-100 90,12 88,07 −2,27 4,2 1,5 −65
CIFAR-10 96,91 95,52 −1,44 4,2 1,3 −70
Stanford Cars 91,34 89,06 −2,50 4,2 1,4 −68
Flowers-102 96,91 95,50 −1,46 4,2 1,5 −63
iNaturalist 70,58 68,72 −2,64 4,2 1,3 −68
Food101 91,23 88,91 −2,54 4,2 1,5 −65
Oxford-IIIT Pet 87,85 85,71 −2,43 4,2 1,6 −61
Fashion MNIST 94,98 93,27 −1,80 4,2 1,4 −66
FER2013 74,17 72,23 −2,61 4,2 1,4 −68
ViT-Base/16 ImageNet 81,07 79,49 −1,95 17,5 6,3 −64
CIFAR-100 94,25 92,19 −2,19 17,5 5,8 −67
CIFAR-10 98,61 96,99 −1,64 17,5 4,3 −75
Stanford Cars 93,74 91,05 −2,87 17,5 5,1 −71
Flowers-102 95,53 94,56 −1,01 17,5 5,5 −68
iNaturalist 68,65 67,16 −2,17 17,5 6,8 −61
Food101 87,41 85,00 −2,76 17,5 6,5 −63
Oxford-IIIT Pet 89,57 87,32 −2,51 17,5 4,9 −72
Fashion MNIST 92,83 90,81 −2,18 17,5 6,5 −63
FER2013 70,21 67,95 −3,23 17,5 6,0 −66
MobileNetV3-Large ImageNet 74,04 72,05 −2,68 0,2 0,1 −67
CIFAR-100 77,70 76,04 −2,13 0,2 0,1 −63
CIFAR-10 89,81 88,56 −1,40 0,2 0,1 −68
Stanford Cars 83,87 82,37 −1,79 0,2 0,1 −66
Flowers-102 90,02 88,68 −1,48 0,2 0,1 −64
iNaturalist 68,32 67,16 −1,70 0,2 0,1 −66
Food101 87,42 85,59 −2,09 0,2 0,1 −72
Oxford-IIIT Pet 85,54 83,33 −2,59 0,2 0,1 −68
Fashion MNIST 92,74 90,60 −2,31 0,2 0,1 −73
FER2013 69,87 67,79 −2,98 0,2 0,1 −63
DenseNet-121 ImageNet 74,65 73,84 −1,08 2,8 0,9 −68
CIFAR-100 72,07 70,11 −2,72 2,8 0,9 −69
CIFAR-10 94,21 92,84 −1,46 2,8 0,7 −74
Stanford Cars 83,14 81,06 −2,50 2,8 0,9 −70
Flowers-102 91,03 88,75 −2,51 2,8 0,8 −70
iNaturalist 69,74 67,94 −2,57 2,8 0,8 −71
Food101 87,34 84,87 −2,82 2,8 0,8 −72
Oxford-IIIT Pet 85,23 83,59 −1,92 2,8 0,7 −76
Fashion MNIST 93,01 90,88 −2,29 2,8 0,9 −66
FER2013 65,13 63,13 −3,07 2,8 0,8 −71
ConvNeXt-Small ImageNet 83,61 81,21 −2,87 8,6 2,6 −70
CIFAR-100 85,58 83,36 −2,59 8,6 2,2 −74
CIFAR-10 94,21 92,00 −2,35 8,6 2,3 −74
Stanford Cars 82,19 80,77 −1,72 8,6 2,8 −68
Flowers-102 90,09 88,44 −1,84 8,6 3,5 −59
iNaturalist 68,90 67,53 −1,98 8,6 3,3 −61
Food101 86,05 84,33 −2,00 8,6 3,1 −64
Oxford-IIIT Pet 84,08 82,18 −2,26 8,6 2,9 −67
Fashion MNIST 93,01 90,85 −2,32 8,6 2,6 −69
FER2013 76,10 74,05 −2,70 8,6 2,7 −68
VGG19-BN ImageNet 74,22 72,64 −2,13 19,6 6,8 −65
CIFAR-100 73,89 71,38 −3,40 19,6 5,9 −70
CIFAR-10 93,45 91,89 −1,67 19,6 4,8 −76
Stanford Cars 88,12 86,54 −1,80 19,6 6,2 −68
Flowers-102 92,34 90,99 −1,46 19,6 5,5 −72
iNaturalist 67,21 65,77 −2,15 19,6 6,1 −69
Food101 85,67 83,39 −2,66 19,6 5,8 −70
Oxford-IIIT Pet 86,45 83,93 −2,91 19,6 5,6 −71
Fashion MNIST 91,78 89,48 −2,51 19,6 5,5 −72
FER2013 68,34 66,68 −2,43 19,6 6,8 −65
ShuffleNet V2 x2.0 ImageNet 76,23 74,40 −2,40 0,5 0,2 −63
CIFAR-100 75,32 73,14 −2,89 0,5 0,2 −63
CIFAR-10 90,45 88,66 −1,98 0,5 0,1 −83
Stanford Cars 82,56 80,45 −2,56 0,5 0,2 −61
Flowers-102 89,12 87,78 −1,50 0,5 0,2 −63
iNaturalist 66,78 65,35 −2,15 0,5 0,2 −67
Food101 84,23 82,30 −2,29 0,5 0,2 −64
Oxford-IIIT Pet 83,67 81,79 −2,25 0,5 0,2 −66
Fashion MNIST 90,89 89,08 −2,00 0,5 0,1 −83
FER2013 67,45 65,55 −2,82 0,5 0,2 −64
Inception-v3 ImageNet 77,17 75,77 −1,81 5,7 1,9 −67
CIFAR-100 82,15 79,30 −3,47 5,7 1,5 −73
CIFAR-10 95,32 93,84 −1,56 5,7 1,4 −76
Stanford Cars 88,76 87,06 −1,92 5,7 1,7 −70
Flowers-102 93,45 92,17 −1,37 5,7 2,0 −65
iNaturalist 72,34 70,62 −2,37 5,7 2,0 −66
Food101 88,12 85,57 −2,90 5,7 1,8 −68
Oxford-IIIT Pet 89,34 87,00 −2,61 5,7 1,8 −68
Fashion MNIST 92,78 90,96 −1,96 5,7 1,3 −77
FER2013 70,45 68,57 −2,67 5,7 1,9 −67
EfficientNetV2-S ImageNet 84,22 82,54 −2,00 8,8 3,1 −65
CIFAR-100 88,45 85,90 −2,88 8,8 2,9 −67
CIFAR-10 97,12 95,72 −1,45 8,8 2,4 −72
Stanford Cars 90,23 88,78 −1,60 8,8 2,9 −67
Flowers-102 96,78 95,55 −1,27 8,8 3,3 −63
iNaturalist 75,67 73,43 −2,96 8,8 3,0 −66
Food101 90,56 88,98 −1,74 8,8 3,2 −64
Oxford-IIIT Pet 89,12 87,52 −1,79 8,8 3,2 −63
Fashion MNIST 95,34 93,47 −1,96 8,8 2,7 −70
FER2013 76,89 74,70 −2,85 8,8 2,8 −68
  1. Comparative Accuracy of Our Method and Prior Pruning Techniques on CIFAR-10

The table below presents a comparison between our method and other pruning techniques on the CIFAR-10 dataset, where around 60% of the model weights are removed. The results show that our approach achieves comparable weight reduction while preserving higher accuracy than alternative methods.

Model Method Acc@1 (%) Acc@5 (%)
ResNet-50 Baseline 98.2 99.8
Selective Weight Decay (SWD) 94.8 99.0
Similarity-based Filter Pruning (SFP) 93.2 98.8
IDAP++ (Ours) 96.0 99.4
EfficientNet-B4 Baseline 96.4 99.4
Selective Weight Decay (SWD) 94.3 99.2
Similarity-based Filter Pruning (SFP) 93.7 99.0
IDAP++ (Ours) 95.5 99.3
ViT-Base/16 Baseline 98.6 98.8
Selective Weight Decay (SWD) 93.9 98.4
Similarity-based Filter Pruning (SFP) 92.6 98.2
IDAP++ (Ours) 97.0 98.5
MobileNetV3-Large Baseline 89.8 98.5
Selective Weight Decay (SWD) 86.7 98.3
Similarity-based Filter Pruning (SFP) 86.4 98.1
IDAP++ (Ours) 88.6 98.0
DenseNet-121 Baseline 94.2 99.0
Selective Weight Decay (SWD) 91.9 98.5
Similarity-based Filter Pruning (SFP) 92.1 98.4
IDAP++ (Ours) 92.8 98.5
ConvNeXt-Small Baseline 94.2 99.5
Selective Weight Decay (SWD) 92.8 99.2
Similarity-based Filter Pruning (SFP) 92.1 99.1
IDAP++ (Ours) 93.4 99.2
VGG19-BN Baseline 93.5 99.8
Selective Weight Decay (SWD) 92.0 99.3
Similarity-based Filter Pruning (SFP) 91.1 98.9
IDAP++ (Ours) 92.2 99.4
ShuffleNet V2 x2.0 Baseline 95.5 98.8
Selective Weight Decay (SWD) 88.6 97.9
Similarity-based Filter Pruning (SFP) 88.4 97.8
IDAP++ (Ours) 88.7 98.1
  1. Model Compression Dynamics of ResNet-50 on CIFAR-10 Using the Two-Stage IDAP++ Framework

The table below demonstrates the pruning dynamics of the ResNet-50 model on the CIFAR-10 dataset using our IDAP++ algorithm over 35 pruning steps. The results show the gradual reduction in model parameters and computational complexity while maintaining high accuracy throughout most of the pruning process.

Pruning Step Stage Params (M) GFlops Top-1 Acc. (%) Top-5 Acc. (%) Δ Top-1 Acc.
1Baseline23.534.0998.2099.860.00
2Filter Prune22.273.8997.6699.85-0.54
3Filter Prune21.203.6697.2399.84-0.97
4Filter Prune19.893.4696.9999.73-1.21
5Filter Prune18.783.3197.1199.89-1.09
6Filter Prune17.543.1397.7499.89-0.46
7Filter Prune16.452.9097.6299.84-0.58
8Filter Prune15.502.7397.9399.87-0.27
9Filter Prune14.622.6198.0999.76-0.11
10Filter Prune14.142.5298.0599.75-0.15
11Filter Prune13.502.3797.8799.77-0.33
12Filter Prune12.982.2697.8599.81-0.35
13Filter Prune12.372.1597.8499.77-0.36
14Filter Prune11.822.0897.7799.79-0.43
15Filter Prune11.261.9897.7099.76-0.50
16Filter Prune11.021.9497.8599.80-0.35
17Filter Prune10.771.8997.5699.81-0.64
18Filter Prune10.531.8597.5099.79-0.70
19Filter Prune10.281.8197.4299.80-0.78
20Filter Prune10.041.7797.3599.78-0.85
21Filter Prune9.791.7397.2899.75-0.92
22Filter Prune9.551.6897.5099.77-0.70
23Filter Prune9.301.4997.5299.78-0.68
24Filter Prune9.051.4597.0899.77-1.12
25Filter Prune8.811.4097.5099.80-0.70
26Filter Prune8.561.3497.4099.81-0.80
27Filter Prune8.321.3096.9199.79-1.29
28Filter Prune8.071.2697.2599.78-0.95
29Filter Prune7.831.2297.5299.80-0.68
30Filter Prune7.571.1997.6399.81-0.57
31Layer Trunc6.731.1797.2299.39-0.98
32Layer Trunc6.671.1696.7898.94-1.42
33Layer Trunc6.621.1596.4298.57-1.78
34Layer Trunc6.561.1495.5798.03-2.63
35Final Fine-Tune6.561.1495.9898.12-2.22
  1. Inference Time Summary by Architecture (RTX 3060, Batch Size = 1, FP32)

The table below presents a comparison of inference times before and after pruning for various neural network architectures. It includes measurements of the base (unpruned) and pruned inference times in milliseconds, as well as the resulting speedup factor achieved through pruning. The results show that across all tested models, pruning leads to a notable reduction in inference time, with speedup factors ranging from 1.57× (EfficientNetV2-S) to 2.16× (MobileNetV3-Large).

Architecture Inference Time Base (ms) Inference Time Pruned (ms) Speedup ×
ResNet-50 8,5 4,3 1,98
EfficientNet-B4 8,8 4,6 1,91
ViT-Base/16 33,2 20,3 1,64
MobileNetV3-Large 4,1 1,9 2,16
DenseNet-121 6,2 3,3 1,88
ConvNeXt-Small 17,5 10,5 1,67
VGG19-BN 38,2 18,0 2,12
ShuffleNet V2 x2.0 3,5 1,8 1,94
Inception-v3 11,6 5,5 2,11
EfficientNetV2-S 17,4 11,1 1,57

Training Dynamics (ResNet50, CIFAR-10)

The figures below illustrate the training dynamics of ResNet-50 on the CIFAR-10 dataset, showing how various metrics evolve during the pruning process. The plots demonstrate the changes in computational complexity (GFLOPs), parameter count, and Top-1 accuracy across pruning steps, providing a comprehensive view of the model's behavior during optimization.

Training metrics showing accuracy and GFLOPs over pruning steps

Training metrics showing parameter count over pruning steps

Training metrics showing Top-1 accuracy over pruning steps

TOP-1 Accuracy Before and After IDAP Pruning for ResNet-50 Model Across Different Datasets

Reproducing Results

To reproduce the results reported in our paper:

  1. Follow the installation instructions above
  2. Download the preprocessed datasets using the provided scripts
  3. Run the training and evaluation scripts
  4. Use plot_training_metrics.py script to generate training dynamics plots and metrics visualization

Acknowledgments

We would like to express our gratitude to the following sources for providing pre-trained models that were used in this research:

  • The authors of "ResNet strikes back: An improved training procedure in timm" (Wightman et al., 2021) for their foundational work on ResNet architectures;
  • The authors of "Which backbone to use: A resource-efficient domain specific comparison for computer vision" (Jeevan & Sethi, 2024) for their contributions to efficient model architectures;
  • The authors of "DepGraph: Towards any structural pruning" (Fang et al., 2023) for their codebase for the structural pruning;
  • The PyTorch Vision team for their comprehensive model zoo (https://docs.pytorch.org/vision/0.19/models).

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

Official codebase for the SIGMOD/PODS 2026 paper "IDAP++: Advancing Divergence-Aware Pruning with Joint Filter and Layer Optimization"

Topics

Resources

License

Stars

Watchers

Forks

Languages