- 
                Notifications
    You must be signed in to change notification settings 
- Fork 1
Geometry
Create basic geometries.
These functions wrap the three.js geometries into simple functions — creating the geometry, material, and mesh at once.
- Box()
- Circle()
- Cone()
- Cylinder()
- Dodecahedron()
- Icosahedron()
- Octahedron()
- Plane()
- Ring()
- Sphere()
- Tetrahedron()
- Torus()
- TorusKnot()
| Name | Type | Options | Default | Description | 
|---|---|---|---|---|
| blend | string | nonenormaladdsubtractmultiply | normal | object's blend mode | 
| bumpMap | string | bump map file | ||
| bumpScale | float | 0.5 | bump map scale | |
| color | color | white | color of object | |
| position | array | [x,y,z]coordinates | [0,0,0] | position of object | 
| rotation | array | [x,y,z]Euler rotation | [0,0,0] | rotation of object | 
| reflect | float | 0.0to1.0 | 0.5 | object's degree of reflectivity | 
| side | string | frontbackboth | front | which side will be rendered | 
| physics | bool | true | physics on or off | |
| bounce | float | 0.0to1.0 | amount of restitution ("bounciness") | |
| friction | float | 0.0to1.0 | amount of friction | |
| mass | int | greater than 0 | object's mass/weight | |
| wireframe | bool | false | render as a wireframe | |
| map | string | map a texture file | ||
| material | string | basicdepthlambertmirrornormalphongphysicalstandard | standard | object material | 
blending equations for the material's RGB and Alpha
Options
none,normal,add,subtract,multiply
Color of the material
could be a hexcolor
'#FF0000'/0xFF0000or a string'red'.
Defines which side of faces will be rendered. See Material Constants
Options
front,back,both
frontwould render a box visible from the outside.
backwould render a box visible from the inside.
bothwould render a box visible from either side.
Map a texture to the object
Meterial of the object
Options
basicdepthlambertmirrornormalphongphysicalstandard
See https://threejsfundamentals.org/threejs/lessons/threejs-materials.html
new XR.Box({
  color: 0xffff00,
  side:"front",
  blend:"add",
  position: [0,1,-2]
});new XR.Circle({
  radius: 1,
  segments: 8,
  theta: [0, 2*Pi]
});new XR.Cone({
  radius: 1,
  height: 1,
  segments: 8,
  openEnded: true,
  theta: [0,2*Pi]
});new XR.Cylinder({
  radius: [1, 1],
  segments: 8,
  color: 0xffff00,
  position: [0.3,0.3,0.3],
  theta: [0,2*Pi]
});new XR.Dodecahedron({
  radius: 1,
  detail: 0
});new XR.Icosahedron({
  radius: 1,
  detail: 0
});new XR.Octahedron({
  radius: 1,
  detail: 0
});new XR.Plane({
  width: 1,
  height:1
});new XR.Ring({
  radius: [0.5, 1],
  segments:8,
  theta:[0,2*Pi]
});new XR.Sphere({
  radius: 1,
  segments: [32,32],
  color: 0xffff00,
  phi:   [PI * 2],
  theta: [0,2*Pi]
});new XR.Tetrahedron({
   radius: 1,
   detail: 0
});new XR.Torus({
  radius: 1,
  tube: 0.4,
  segments:[8,6],
  arc: 6
});segments
type: array
represent the [radialSegments, tubularSegments]
new XR.TorusKnot({
  radius: 1,
  tube: 0.4,
  segments:[64,8],
  wind:[2,3]
});type: array
represent the [radialSegments, tubularSegments]
type: array
default: [2,3]
represent the [p, q]
how many times the geometry winds around a circle in the interior of the torus