Skip to content

test #672

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 13 commits into
base: main
Choose a base branch
from
Open

test #672

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
tmp_trainer
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -339,6 +339,8 @@ model = load_model_on_gpus("THUDM/chatglm2-6b", num_gpus=2)

如果你觉得我们的工作有帮助的话,请考虑引用下列论文,ChatGLM2-6B 的论文会在近期公布,敬请期待~

123

```
@article{zeng2022glm,
title={Glm-130b: An open bilingual pre-trained model},
Expand Down
82 changes: 82 additions & 0 deletions finetune/finetune-opt-lora.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
import torch

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
print("device:", device)

checkpoint = "/Users/hhwang/models/opt-350m"
checkpoint = "/Users/hhwang/models/opt-125m"

prompt = "No matter how plain a woman may be"
print('***************** before lora finetune *********************')
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
batch = tokenizer(prompt, return_tensors='pt')
output_tokens = model.generate(**batch, max_new_tokens=50)
print('prompt:', prompt)
print('result:', tokenizer.decode(output_tokens[0], skip_special_tokens=True))

print('***************** begin lora finetune *********************')
from peft import LoraConfig, TaskType
from peft import get_peft_model
print(model)
lora_config = LoraConfig(
r=16,
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM,
lora_alpha=32,
lora_dropout=0.05
)
lora_model = get_peft_model(model, lora_config)
lora_model.print_trainable_parameters()


from datasets import load_dataset
dataset = load_dataset("/Users/hhwang/models/dataset/english_quotes")
dataset = dataset.map(lambda samples: tokenizer(samples['quote']), batched=True)
train_ds = dataset['train'].select(range(100))

from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
trainer = Trainer(
model=lora_model,
train_dataset=train_ds,
args=TrainingArguments(
num_train_epochs=1,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=3,
max_steps=10,
learning_rate=2e-4,
# fp16=True, # only works on cuda
logging_steps=1,
output_dir='outputs'
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
lora_model.config.use_cache = False # silence the warnings. Please re-enable for inference!

print('begin train')
trainer.train()
print('done train')

lora_checkpoint = "/tmp/outputs/opt-350m-lora"
lora_model.save_pretrained(lora_checkpoint)
print('Save', lora_checkpoint)

print('***************** after lora finetune *********************')
from peft import PeftModel, PeftConfig
config = PeftConfig.from_pretrained(lora_checkpoint)
# print(config)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
lora_model = PeftModel.from_pretrained(model, lora_checkpoint)
batch = tokenizer(prompt, return_tensors='pt')
output_tokens = lora_model.generate(**batch, max_new_tokens=50)
print('prompt:', prompt)
print('result:', tokenizer.decode(output_tokens[0], skip_special_tokens=True))

58 changes: 58 additions & 0 deletions finetune/finetune-opt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# https://github.com/jesusoctavioas/Finetune_opt_bnb_peft

from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
import torch

# import os
# os.environ["TOKENIZERS_PARALLELISM"] = "false"

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
print("device:", device)

checkpoint = "/Users/hhwang/models/opt-125m"
checkpoint = "/Users/hhwang/models/opt-350m"
# checkpoint = "/Users/hhwang/models/gpt2"

print('checkpoint:', checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=False)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# model = AutoModelForCausalLM.from_pretrained(checkpoint, load_in_8bit=True, device_map='auto')
model = AutoModelForCausalLM.from_pretrained(checkpoint)

batch = tokenizer("Two things are infinite: ", return_tensors='pt')
output_tokens = model.generate(**batch, max_new_tokens=50)
print('result:', tokenizer.decode(output_tokens[0], skip_special_tokens=True))

from datasets import load_dataset
# data = load_dataset("Abirate/english_quotes")
dataset = load_dataset("/Users/hhwang/models/dataset/english_quotes")
print('dataset', dataset)
dataset = dataset.map(lambda samples: tokenizer(samples['quote']), batched=True)
train_ds = dataset['train'].select(range(100))
print('train_ds', train_ds)

trainer = Trainer(
model=model,
train_dataset=train_ds,
args=TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=3,
max_steps=10,
learning_rate=2e-4,
# fp16=True, # only works on cuda
logging_steps=1,
output_dir='outputs'
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
print('begin train')
trainer.train()
print('done train')
Loading