Skip to content
This repository was archived by the owner on Aug 28, 2025. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -147,6 +147,8 @@
#
# - ``ddp`` (and aliases ``ddp_find_unused_parameters_false``, ``ddp_find_unused_parameters_true``, ``ddp_spawn``, ``ddp_fork``, ``ddp_notebook``)
# - ``fsdp`` (and alias ``fsdp_cpu_offload``)
# - **NEW**: ``ModelParallelStrategy``
# - [See this example](https://finetuning-scheduler.readthedocs.io/en/stable/distributed/model_parallel_scheduled_fine_tuning.html) using FTS with PyTorch's composable distributed (e.g. ``fully_shard``, ``checkpoint``) and Tensor Parallelism (TP) APIs
#
# Custom or officially unsupported strategies can be used by setting [FinetuningScheduler.allow_untested](https://finetuning-scheduler.readthedocs.io/en/stable/api/finetuning_scheduler.fts.html?highlight=allow_untested#finetuning_scheduler.fts.FinetuningScheduler.params.allow_untested) to ``True``.
# Note that most currently unsupported strategies are so because they require varying degrees of modification to be compatible. For example, ``deepspeed`` will require a [StrategyAdapter](https://finetuning-scheduler.readthedocs.io/en/stable/api/finetuning_scheduler.strategy_adapters.html#finetuning_scheduler.strategy_adapters.StrategyAdapter) to be written (similar to the one for ``FSDP``, [FSDPStrategyAdapter](https://finetuning-scheduler.readthedocs.io/en/stable/api/finetuning_scheduler.strategy_adapters.html#finetuning_scheduler.strategy_adapters.FSDPStrategyAdapter)) before support can be added (PRs welcome!),
Expand Down Expand Up @@ -260,7 +262,10 @@ def __init__(
self.save_hyperparameters()
os.environ["TOKENIZERS_PARALLELISM"] = "true" if self.hparams.tokenizers_parallelism else "false"
self.tokenizer = AutoTokenizer.from_pretrained(
self.hparams.model_name_or_path, use_fast=True, local_files_only=False
self.hparams.model_name_or_path,
use_fast=True,
local_files_only=False,
clean_up_tokenization_spaces=True,
)

def prepare_data(self):
Expand Down
2 changes: 1 addition & 1 deletion lightning_examples/finetuning-scheduler/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
datasets >=2.17.0 # to allow explicitly setting `trust_remote_code`
finetuning-scheduler[examples] <=2.4.0
finetuning-scheduler[examples] <=2.5.0
Loading