Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
153 changes: 153 additions & 0 deletions datafusion/spark/src/function/string/luhn_check.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::{any::Any, sync::Arc};

use arrow::array::{Array, AsArray, BooleanArray};
use arrow::datatypes::DataType;
use arrow::datatypes::DataType::Boolean;
use datafusion_common::utils::take_function_args;
use datafusion_common::{exec_err, Result, ScalarValue};
use datafusion_expr::{
ColumnarValue, ScalarFunctionArgs, ScalarUDFImpl, Signature, TypeSignature,
Volatility,
};

/// Spark-compatible `luhn_check` expression
/// <https://spark.apache.org/docs/latest/api/sql/index.html#luhn_check>
#[derive(Debug)]
pub struct SparkLuhnCheck {
signature: Signature,
}

impl Default for SparkLuhnCheck {
fn default() -> Self {
Self::new()
}
}

impl SparkLuhnCheck {
pub fn new() -> Self {
Self {
signature: Signature::one_of(
vec![
TypeSignature::Exact(vec![DataType::Utf8]),
TypeSignature::Exact(vec![DataType::Utf8View]),
TypeSignature::Exact(vec![DataType::LargeUtf8]),
],
Volatility::Immutable,
),
}
}
}

impl ScalarUDFImpl for SparkLuhnCheck {
fn as_any(&self) -> &dyn Any {
self
}

fn name(&self) -> &str {
"luhn_check"
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(Boolean)
}

fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
let [array] = take_function_args(self.name(), &args.args)?;

match array {
ColumnarValue::Array(array) => match array.data_type() {
DataType::Utf8View => {
let str_array = array.as_string_view();
let values = str_array
.iter()
.map(|s| s.map(luhn_check_impl))
.collect::<BooleanArray>();
Ok(ColumnarValue::Array(Arc::new(values)))
}
DataType::Utf8 => {
let str_array = array.as_string::<i32>();
let values = str_array
.iter()
.map(|s| s.map(luhn_check_impl))
.collect::<BooleanArray>();
Ok(ColumnarValue::Array(Arc::new(values)))
}
DataType::LargeUtf8 => {
let str_array = array.as_string::<i64>();
let values = str_array
.iter()
.map(|s| s.map(luhn_check_impl))
.collect::<BooleanArray>();
Ok(ColumnarValue::Array(Arc::new(values)))
}
other => {
exec_err!("Unsupported data type {other:?} for function `luhn_check`")
}
},
ColumnarValue::Scalar(ScalarValue::Utf8(Some(s)))
| ColumnarValue::Scalar(ScalarValue::LargeUtf8(Some(s)))
| ColumnarValue::Scalar(ScalarValue::Utf8View(Some(s))) => Ok(
ColumnarValue::Scalar(ScalarValue::Boolean(Some(luhn_check_impl(s)))),
),
ColumnarValue::Scalar(ScalarValue::Utf8(None))
| ColumnarValue::Scalar(ScalarValue::LargeUtf8(None))
| ColumnarValue::Scalar(ScalarValue::Utf8View(None)) => {
Ok(ColumnarValue::Scalar(ScalarValue::Boolean(None)))
}
other => {
exec_err!("Unsupported data type {other:?} for function `luhn_check`")
}
}
}
}

/// Validates a string using the Luhn algorithm.
/// Returns `true` if the input is a valid Luhn number.
fn luhn_check_impl(input: &str) -> bool {
let mut sum = 0u32;
let mut alt = false;
let mut digits_processed = 0;

for b in input.as_bytes().iter().rev() {
let digit = match b {
b'0'..=b'9' => {
digits_processed += 1;
b - b'0'
}
_ => return false,
};

let mut val = digit as u32;
if alt {
val *= 2;
if val > 9 {
val -= 9;
}
}
sum += val;
alt = !alt;
}

digits_processed > 0 && sum % 10 == 0
}
9 changes: 8 additions & 1 deletion datafusion/spark/src/function/string/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,13 +17,15 @@

pub mod ascii;
pub mod char;
pub mod luhn_check;

use datafusion_expr::ScalarUDF;
use datafusion_functions::make_udf_function;
use std::sync::Arc;

make_udf_function!(ascii::SparkAscii, ascii);
make_udf_function!(char::SparkChar, char);
make_udf_function!(luhn_check::SparkLuhnCheck, luhn_check);

pub mod expr_fn {
use datafusion_functions::export_functions;
Expand All @@ -38,8 +40,13 @@ pub mod expr_fn {
"Returns the ASCII character having the binary equivalent to col. If col is larger than 256 the result is equivalent to char(col % 256).",
arg1
));
export_functions!((
luhn_check,
"Returns whether the input string of digits is valid according to the Luhn algorithm.",
arg1
));
}

pub fn functions() -> Vec<Arc<ScalarUDF>> {
vec![ascii(), char()]
vec![ascii(), char(), luhn_check()]
}
156 changes: 136 additions & 20 deletions datafusion/sqllogictest/test_files/spark/string/luhn_check.slt
Original file line number Diff line number Diff line change
Expand Up @@ -15,23 +15,139 @@
# specific language governing permissions and limitations
# under the License.

# This file was originally created by a porting script from:
# https://github.com/lakehq/sail/tree/43b6ed8221de5c4c4adbedbb267ae1351158b43c/crates/sail-spark-connect/tests/gold_data/function
# This file is part of the implementation of the datafusion-spark function library.
# For more information, please see:
# https://github.com/apache/datafusion/issues/15914

## Original Query: SELECT luhn_check('79927398713');
## PySpark 3.5.5 Result: {'luhn_check(79927398713)': True, 'typeof(luhn_check(79927398713))': 'boolean', 'typeof(79927398713)': 'string'}
#query
#SELECT luhn_check('79927398713'::string);

## Original Query: SELECT luhn_check('79927398714');
## PySpark 3.5.5 Result: {'luhn_check(79927398714)': False, 'typeof(luhn_check(79927398714))': 'boolean', 'typeof(79927398714)': 'string'}
#query
#SELECT luhn_check('79927398714'::string);

## Original Query: SELECT luhn_check('8112189876');
## PySpark 3.5.5 Result: {'luhn_check(8112189876)': True, 'typeof(luhn_check(8112189876))': 'boolean', 'typeof(8112189876)': 'string'}
#query
#SELECT luhn_check('8112189876'::string);

query B
SELECT luhn_check('79927398713'::string);
----
true


query B
SELECT luhn_check('79927398714'::string);
----
false


query B
SELECT luhn_check('8112189876'::string);
----
true

query B
select luhn_check('4111111111111111'::string);
----
true

query B
select luhn_check('5500000000000004'::string);
----
true

query B
select luhn_check('340000000000009'::string);
----
true

query B
select luhn_check('6011000000000004'::string);
----
true


query B
select luhn_check('6011000000000005'::string);
----
false


query B
select luhn_check('378282246310006'::string);
----
false


query B
select luhn_check('0'::string);
----
true


query B
select luhn_check('79927398713'::string)
----
true

query B
select luhn_check('4417123456789113'::string)
----
true

query B
select luhn_check('7992 7398 714'::string)
----
false

query B
select luhn_check('79927398714'::string)
----
false

query B
select luhn_check('4111111111111111 '::string)
----
false


query B
select luhn_check('4111111 111111111'::string)
----
false

query B
select luhn_check(' 4111111111111111'::string)
----
false

query B
select luhn_check(''::string)
----
false

query B
select luhn_check(' ')
----
false


query B
select luhn_check('510B105105105106'::string)
----
false


query B
select luhn_check('ABCDED'::string)
----
false

query B
select luhn_check(null);
----
NULL

query B
select luhn_check(6011111111111117::BIGINT)
----
true


query B
select luhn_check(6011111111111118::BIGINT)
----
false


query B
select luhn_check(123.456::decimal(6,3))
----
false