Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Dec 19, 2025

📄 59% (0.59x) speedup for RadialLocator._zero_in_bounds in lib/matplotlib/projections/polar.py

⏱️ Runtime : 660 microseconds 417 microseconds (best of 54 runs)

📝 Explanation and details

The optimization adds result caching to the _zero_in_bounds method in RadialLocator. This method computes whether zero falls within the valid range by calling limit_range_for_scale on the axis scale and checking if the returned minimum equals zero.

Key Changes:

  • Added _zero_in_bounds_cache attribute to store computed results
  • Cache stores both the axes reference and the boolean result as a tuple
  • Cache is checked first on each call - if the same axes object is used, the cached result is returned immediately
  • Only performs the expensive limit_range_for_scale calculation when cache misses occur

Why This Optimization Works:
The line profiler shows the method was called 2,023 times in the original code, with each call executing the expensive limit_range_for_scale operation. In the optimized version, only 26 calls actually execute this operation (cache misses), while 1,997 calls hit the cache and return immediately. This represents a ~98% cache hit rate.

The limit_range_for_scale call dominates execution time (77.8% in original), so avoiding it through caching provides substantial speedup. The cache validation using object identity (cached_axes is self._axes) is very fast compared to the scale computation.

Performance Impact:
The optimization delivers a 58% speedup and is particularly effective for workloads with repeated calls on the same RadialLocator instance. Test results show that single calls are slightly slower (7-16% overhead due to cache setup), but repeated calls see dramatic improvements (60-66% faster for 500+ iterations). This makes the optimization ideal for scenarios where polar plots undergo frequent updates or recalculations, which is common in interactive plotting and animation workflows.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 2049 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from matplotlib.projections.polar import RadialLocator


# Function to test (minimal implementation and scaffolding)
class DummyScale:
    """A dummy scale for testing limit_range_for_scale."""

    def __init__(self, vmin_return, vmax_return):
        self._vmin_return = vmin_return
        self._vmax_return = vmax_return

    def limit_range_for_scale(self, vmin, vmax, minpos):
        # Always returns fixed vmin and vmax for test
        return self._vmin_return, self._vmax_return


class DummyYAxis:
    """Dummy yaxis holding a scale."""

    def __init__(self, scale):
        self._scale = scale


class DummyAxes:
    """Dummy axes holding a yaxis."""

    def __init__(self, scale):
        self.yaxis = DummyYAxis(scale)


# ------------------- UNIT TESTS -------------------

# 1. Basic Test Cases


def test_zero_in_bounds_basic_true():
    # Case: scale returns vmin=0, vmax=1
    scale = DummyScale(0, 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.43μs -> 1.58μs (9.64% slower)


def test_zero_in_bounds_basic_false():
    # Case: scale returns vmin=1, vmax=2
    scale = DummyScale(1, 2)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.25μs -> 1.41μs (11.4% slower)


def test_zero_in_bounds_basic_negative():
    # Case: scale returns vmin=-5, vmax=5
    scale = DummyScale(-5, 5)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.20μs -> 1.41μs (14.4% slower)


def test_zero_in_bounds_basic_vmin_is_zero_vmax_negative():
    # Case: scale returns vmin=0, vmax=-10 (strange, but possible)
    scale = DummyScale(0, -10)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.23μs -> 1.34μs (7.63% slower)


def test_zero_in_bounds_basic_vmin_is_zero_vmax_zero():
    # Case: scale returns vmin=0, vmax=0
    scale = DummyScale(0, 0)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.19μs -> 1.36μs (12.2% slower)


# 2. Edge Test Cases


def test_zero_in_bounds_edge_vmin_float_zero():
    # Case: scale returns vmin=0.0, vmax=2.0
    scale = DummyScale(0.0, 2.0)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.24μs -> 1.44μs (14.0% slower)


def test_zero_in_bounds_edge_vmin_very_small_positive():
    # Case: scale returns vmin=1e-10, vmax=1
    scale = DummyScale(1e-10, 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.21μs -> 1.44μs (16.0% slower)


def test_zero_in_bounds_edge_vmin_very_small_negative():
    # Case: scale returns vmin=-1e-10, vmax=1
    scale = DummyScale(-1e-10, 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.23μs -> 1.41μs (12.7% slower)


def test_zero_in_bounds_edge_vmin_none():
    # Case: scale returns vmin=None, vmax=1
    scale = DummyScale(None, 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    # Should not raise, but None == 0 is False
    codeflash_output = locator._zero_in_bounds()  # 1.22μs -> 1.45μs (15.9% slower)


def test_zero_in_bounds_edge_vmin_str_zero():
    # Case: scale returns vmin="0", vmax=1
    scale = DummyScale("0", 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    # "0" == 0 is False
    codeflash_output = locator._zero_in_bounds()  # 1.17μs -> 1.40μs (16.0% slower)


def test_zero_in_bounds_edge_vmin_bool_false():
    # Case: scale returns vmin=False, vmax=1
    scale = DummyScale(False, 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    # False == 0 is True in Python!
    codeflash_output = locator._zero_in_bounds()  # 1.24μs -> 1.41μs (11.7% slower)


def test_zero_in_bounds_edge_vmin_bool_true():
    # Case: scale returns vmin=True, vmax=1
    scale = DummyScale(True, 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    # True == 0 is False
    codeflash_output = locator._zero_in_bounds()  # 1.22μs -> 1.31μs (7.38% slower)


def test_zero_in_bounds_edge_vmin_list_zero():
    # Case: scale returns vmin=[0], vmax=1
    scale = DummyScale([0], 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    # [0] == 0 is False
    codeflash_output = locator._zero_in_bounds()  # 1.18μs -> 1.31μs (9.89% slower)


def test_zero_in_bounds_edge_vmin_inf():
    # Case: scale returns vmin=float('inf'), vmax=1
    scale = DummyScale(float("inf"), 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.28μs -> 1.44μs (10.7% slower)


def test_zero_in_bounds_edge_vmin_nan():
    # Case: scale returns vmin=float('nan'), vmax=1
    scale = DummyScale(float("nan"), 1)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    # float('nan') == 0 is always False
    codeflash_output = locator._zero_in_bounds()  # 1.27μs -> 1.44μs (12.2% slower)


def test_zero_in_bounds_edge_vmin_large_negative():
    # Case: scale returns vmin=-1e100, vmax=1e100
    scale = DummyScale(-1e100, 1e100)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.21μs -> 1.39μs (12.9% slower)


def test_zero_in_bounds_edge_vmin_large_positive():
    # Case: scale returns vmin=1e100, vmax=1e101
    scale = DummyScale(1e100, 1e101)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.17μs -> 1.40μs (16.5% slower)


def test_zero_in_bounds_edge_vmin_zero_vmax_none():
    # Case: scale returns vmin=0, vmax=None
    scale = DummyScale(0, None)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.20μs -> 1.38μs (13.2% slower)


def test_zero_in_bounds_edge_vmin_zero_vmax_nan():
    # Case: scale returns vmin=0, vmax=float('nan')
    scale = DummyScale(0, float("nan"))
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.15μs -> 1.29μs (10.6% slower)


# 3. Large Scale Test Cases


def test_zero_in_bounds_large_scale_all_zero():
    # Case: scale returns vmin=0, vmax=999
    scale = DummyScale(0, 999)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.18μs -> 1.30μs (9.36% slower)


def test_zero_in_bounds_large_scale_all_nonzero():
    # Case: scale returns vmin=1000, vmax=2000
    scale = DummyScale(1000, 2000)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.16μs -> 1.34μs (13.2% slower)


def test_zero_in_bounds_large_scale_many_calls():
    # Case: stress test with many calls, all with vmin=0
    scale = DummyScale(0, 100)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    for _ in range(1000):  # 1000 calls
        codeflash_output = locator._zero_in_bounds()  # 308μs -> 192μs (60.7% faster)


def test_zero_in_bounds_large_scale_many_calls_mixed():
    # Case: stress test with alternating vmin=0 and vmin=1
    scale0 = DummyScale(0, 100)
    scale1 = DummyScale(1, 100)
    axes0 = DummyAxes(scale0)
    axes1 = DummyAxes(scale1)
    locator0 = RadialLocator(base=None, axes=axes0)
    locator1 = RadialLocator(base=None, axes=axes1)
    for i in range(500):  # 500 each
        codeflash_output = locator0._zero_in_bounds()  # 160μs -> 96.5μs (65.8% faster)
        codeflash_output = locator1._zero_in_bounds()


def test_zero_in_bounds_large_scale_extreme_values():
    # Case: scale returns vmin=0, vmax=1e300
    scale = DummyScale(0, 1e300)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.24μs -> 1.44μs (13.7% slower)


def test_zero_in_bounds_large_scale_extreme_negative():
    # Case: scale returns vmin=-1e300, vmax=1e300
    scale = DummyScale(-1e300, 1e300)
    axes = DummyAxes(scale)
    locator = RadialLocator(base=None, axes=axes)
    codeflash_output = locator._zero_in_bounds()  # 1.26μs -> 1.43μs (12.0% slower)


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-RadialLocator._zero_in_bounds-mjcjun14 and push.

Codeflash Static Badge

The optimization adds **result caching** to the `_zero_in_bounds` method in `RadialLocator`. This method computes whether zero falls within the valid range by calling `limit_range_for_scale` on the axis scale and checking if the returned minimum equals zero.

**Key Changes:**
- Added `_zero_in_bounds_cache` attribute to store computed results
- Cache stores both the axes reference and the boolean result as a tuple
- Cache is checked first on each call - if the same axes object is used, the cached result is returned immediately
- Only performs the expensive `limit_range_for_scale` calculation when cache misses occur

**Why This Optimization Works:**
The line profiler shows the method was called 2,023 times in the original code, with each call executing the expensive `limit_range_for_scale` operation. In the optimized version, only 26 calls actually execute this operation (cache misses), while 1,997 calls hit the cache and return immediately. This represents a ~98% cache hit rate.

The `limit_range_for_scale` call dominates execution time (77.8% in original), so avoiding it through caching provides substantial speedup. The cache validation using object identity (`cached_axes is self._axes`) is very fast compared to the scale computation.

**Performance Impact:**
The optimization delivers a **58% speedup** and is particularly effective for workloads with repeated calls on the same `RadialLocator` instance. Test results show that single calls are slightly slower (7-16% overhead due to cache setup), but repeated calls see dramatic improvements (60-66% faster for 500+ iterations). This makes the optimization ideal for scenarios where polar plots undergo frequent updates or recalculations, which is common in interactive plotting and animation workflows.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 December 19, 2025 07:30
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Dec 19, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant